
Optimizing Dynamic Languages

for Analytical Workloads

Toni Mattis

HPI Graduate School
Supervisor: Prof. Dr. Robert Hirschfeld HPI Workshop

2015-06-30

Analytical Workloads

2015-06-30 T. Mattis | Software Architecture Group 2

Analytical

“… concerned with the discovery and communication of

meaningful patterns in data”

Analytical Workloads

› Process large data volumes

› Data often homogeneous, sometimes high-dimensional

› Data mostly read, side-effect free computations

Analytical Workloads

2015-06-30 T. Mattis | Software Architecture Group 3

› @get(„product/<id>/units_sold“)

› def get_sales_total(id):

› units = sum(item.quantity

› for item in SalesItem

› if item.id == id)

› return json.dumps({

› „product“: id

› „units_sold“: units})

›

Scenarios

› Decision support

› Statistics

› Model fitting

› Simulations

› ...

Example

› Scope: ERP web service

› Answer the number of units
sold for a specified product

Example: Ranking Players in Games

2015-06-30 T. Mattis | Software Architecture Group 4

› scores = {p: 100 for p in players}

› ...

› for match in matches_played:

› pred = predict_result(match, scores)

› delta = 40 * (match.result – pred)

› scores[match.players[0]] += delta

› scores[match.players[1]] -= delta

1

2

3

4

5

6

:Player

:Player

:Match

- result: {0, 1}

- players[0]

- players[1]

Large data volume
Homogeneous

Dynamic Languages

2015-06-30 T. Mattis | Software Architecture Group 5

Maintainability Requirements

› Conciseness: code communicates exactly the domain logic

› Evolution: domain logic should be able to evolve independently from

technology and technical code

Dynamic Languages

2015-06-30 T. Mattis | Software Architecture Group 6

Dynamicity comes at a performance cost

Why?

› Heap structure (objects) build for flexibility

› Analytical data and workloads are quite static

List

Object Layout

2015-06-30
T. Mattis | Software Architecture Group

7

Int 42

Object

X: 0 Y: 1Map
(Class)

Int 21
42 21

Object

Object

Analytical Databases

2015-06-30 T. Mattis | Software Architecture Group 8

Optimized for

› Data-intensive queries

› Reading

› Tough response time requirements

Prevalent Technology

› Main memory based

› Column-oriented storage

Column-oriented Storage (simplified)

2015-06-30 T. Mattis | Software Architecture Group 9

Row-oriented Layout Column-oriented Layout

A B C A B C A A A A A

A B C A A A A A

Main Memory

B B B… …

CPU Cache CPU Cache

“Bottleneck”

Main Memory

Transposing Objects

2015-06-30 T. Mattis | Software Architecture Group 13

X: 0 Y: 1Map
(Class)

Object

Object 42 21

Object

Reference

X: Y:Map
(Class)

Object 42 21

Reference

1

0.

2.

3.

1.

4.

Object Identity by Proxy

2015-06-30 T. Mattis | Software Architecture Group 15

Embedding of (class, offset)-identity into address identity:

› Use a proxy object with fields

class and offset

› Dynamically computes memory address

on attribute access

» Overhead can be mitigated by

Just-in-time (JIT) compilation

X: Y:Map
(Class)

Object 42 21

1

0.

2.

3.

1.

4.

Proxy

Tracing JIT Compilers (Background)

2015-06-30 T. Mattis | Software Architecture Group 16

1 7 8 B C Instruction Stream (Opcodes) 2 3 4 5 6 9 A2 3 4 5 6 9 A

Repetitions > 1000x

2 3 4 5 6 9 A

2 5' 9 APre

MOV; MOV; ADD; CMP; JMP Native Code

Hot code detected:
→ start recording operations

Trace
(flat, no branches, only "guards")

Optimized Trace
(Loop-invariant code motion,
allocation removal, ...)

Allocation Removal (Background)

2015-06-30 T. Mattis | Software Architecture Group 17

1Proxy

Garbage Collection

1Proxy Read "offset"

1Class

1Proxy

Creation

1Class

1

xCol

xCol

Class

xCol

1Proxy Read
"class.xCol"

Class

xCol

1

1

Proxy removed
Class and offset unwrapped

Class removed
Column unwrapped

JIT + Columns

2015-06-30 T. Mattis | Software Architecture Group 18

» Allocation Removal explodes proxies and classes

into offsets and columns

for i in LineItem.all():

total += i.quantity

n = 0

while n < size:

i = proxy(LineItem, n)

col = i.class.columns['quantity']

offset = i.offset

value = col[offset]

total = total + value

n += 1

n = 0

col = LineItem.columns['quantity']

while n < size:

value = col[n]

total = total + value

n += 1

Changes to Collections

2015-06-30 T. Mattis | Software Architecture Group 19

» Traditional collections: structure with pointers (addresses)

» Columnar collections

› Structure with proxies?

› Structure with offsets if items of single class!

List

Object

CList 4 2 1 3

Class

Proxy

"Proxy with
multiple offsets"

CList

Proxy

Collections and Allocation Removal

2015-06-30 T. Mattis | Software Architecture Group 20

CList 4 2 1 3

0 6 5 3

3

getitem

append

3

JITted data flow

Dataflow
experienced by
programmer

Class

Class

Class

Associations

2015-06-30 T. Mattis | Software Architecture Group 21

» Inspired by foreign keys

» Allocation Removal eliminates intermediate proxies:

› a.b.y => y_column[b_column[offset]] ("Simple Join")

x: b:Class A

Object 42 3

0.

2.

3.

1.

4.

y: Class B

21

0.

2.

3.

1.a

a.b

Our Prototype

2015-06-30 T. Mattis | Software Architecture Group 22

PyPy

› Fast Python interpreter

› Tracing JIT-compiler

› Allocation Removal

Our Prototype „Obsidian“

› Implemented on top of PyPy (mostly library code)

› Optimized proxies and collections for PyPy's JIT

Evaluation Setup

2015-06-30 T. Mattis | Software Architecture Group 28

Hypotheses

› Columnar objects outperform traditional objects on analytical code

› Columnar objects are outperformed by commercial in-memory DBs

Competitors

› Baseline: PyPy (as idiomatic Python code)

› PyPy with columnar objects (as idiomatic Python code)

› Commercial in-memory database (as stored procedure)

Platform: 2x 6-core Intel Xeon E5 @ 2.3 GHz (24 threads) | 128 GB RAM | PyPy 2.5.0 | SLES 11.2

Evaluation Scenarios

2015-06-30 T. Mattis | Software Architecture Group 29

ATP: Available-to-Promise Candidate Selection*

› Determine a conflic-free delivery schedule for a set of orders given fixed

incoming and outgoing stock changes (always stock ≥ 0)

KM: Kaplan-Meier Estimator*

› Approximate a survival function over time given censored records

Elo: Chess-Player Ranking

› Rank players given only their match outcomes

Balance:

› Compute how long an account was overdrawn given a set of transactions

*) professionally optimized stored procedures were provided by the database vendor

Results

2015-06-30 T. Mattis | Software Architecture Group 30

ATP KM
The SP should be optimized

production code

Complex
algorithm →

long warmup

Consistently faster

1.6 – 3.1x vs PyPy

1.3 – 2.5x vs SP

Results

2015-06-30 T. Mattis | Software Architecture Group 31

Elo Balance

Columns better

Consistently faster

1.4 – 1.8x vs PyPy

1.1 – 1.2x vs SP

No significance due to high variance

Future Work

2015-06-30 T. Mattis | Software Architecture Group 32

» Run obsidian on the same columns as an in-memory database

› Ongoing research in our group with promising preliminary results

Application/Service

Heap

Logic

DB
Logic

(Main memory) DBMS

StorageObsidian

“Jit-compiling” to a Real Database

2015-06-30 T. Mattis | Software Architecture Group 33

Column
Access Logic
(C/C++/ASM)

User Logic Columnar
Mapping

Virtual
Memory

Compression, …

JIT traces full data flowJIT traces
partial data flow

“Black Box”

“Real” DBMS

“Jit-compiling” to a Real Database

2015-06-30 T. Mattis | Software Architecture Group 34

User Logic Columnar
Mapping

Virtual
Memory

Where should we place the boundary?
 Guide JIT to better “inline” C/C++ code
→ Re-implement DB in Python to allow JITting

Ongoing research by Johannes Henning, HPI

Conclusion

2015-06-30 T. Mattis | Software Architecture Group 35

» Columns can bring performance benefits to dynamic

language implementations in analytical scenarios

» Tracing JIT compilers and columns syngergize well

» Unexplored opportunities in the database domain

2015-06-30 T. Mattis | Software Architecture Group 36

Stored Procedures

2015-06-30 T. Mattis | Software Architecture Group 37

Interacting with a Database

2015-06-30 T. Mattis | Software Architecture Group 38

Object-relational mapping

+ Object-oriented abstractions

- Limited by underlying protocol (SQL, libpg, ...)

- Copying

Stored Procedures

+ Performance

- Split logic (split tooling, split lifecycles)

- Technical abstactions (obscuring domain logic)

It may be a good idea to stay inside a single execution environment

Associations of higher Multiplicity

2015-06-30 T. Mattis | Software Architecture Group 39

» Indexed Join-tables

x: Class A

42

0.

2.

3.

1.

4.

AProxy

y: Class B

84

0.

2.

3.

1.

4.

21

1

1

4

3

3 4

Quasi-Index [Optional]
Configurable: Consists of per-instance Lists/Sets/Dicts

JoinTable a: b: bs:

Collection Operations

2015-06-30 T. Mattis | Software Architecture Group 40

» Many languages have special collection operators:

› Python: reduce, map, [f(a, b) for a in A for b in B]...

› ST-80: collection inject:into:, c collect:, c gather:, ...

› C#: collection.Reduce(func), c.Select(func), ...

» Example in Python:

sum(i.quantity * i.unit_price

for i in order.items

for order in customer.orders

if order.year >= 2015)

Optimizing Collection Operations

2015-06-30 T. Mattis | Software Architecture Group 41

» Defer evaluation

› Apply optimizations over the full operation

› Prevent intermediate proxies

› Leave "Column World" as late as possible

» Infer result types

› Allows to allocate result columns instead of ordinary objects

Deferred Evaluation: Plan Construction

2015-06-30 T. Mattis | Software Architecture Group 42

sum(i.quantity * i.unit_price

for i in order.items

for order in customer.orders

if order.year >= 2015)

Python OpCodes

sum

gather

filter

>=

. 2015

arg[0] year

.

customer orders

.

arg[0] items

map

.

arg[0] quantity

.

arg[0] unit_price

*

Abstract Interpretation

Plan Optimization

2015-06-30 T. Mattis | Software Architecture Group 43

Type inference
› LINQ type system by Erik Meijer

(handles Python's dynamicity well)

› Create anonymous classes with result columns

› Warn user on failure, continue un-optimized

Tree transformations
› Move filters down the hierarchy

› Replace gather by relational (hash-)join

› ...

Compile to new OpCode and run if needed

sum

gather

filter

>
=

.
201

5

arg[0] year

.

customer orders

.

arg[0] items

map

.

arg[0] quantity

.

arg[0] unit_price

*

Results: Exact Timings

2015-06-30 T. Mattis | Software Architecture Group 44

