
COP for Smart Contracts
Activity Contexts

Toni Mattis, Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute, University of Potsdam, Germany

COP ‘18 17 July 2018, Amsterdam, Netherlands

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Centralized vs. Decentralized Services

2

server
(owned by third party)

node
(owned by participant)

client
(owned by participant)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Smart Contracts as Decentralized Service

» Set of executable rules
according to which real-world
actors can interact
› "Game" (state, moves, players)

› "Object" (identity, state, behavior)

» Automated enforcement
› Transfer digitally manageable

goods (money, rights, …)

› Can take external events as input
(deadlines, stock prices, …)

» No central authority
› Consensus by quorum

› Lower transaction costs

› Trustless

3

node
(owned by participant)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Decentralized Execution Model

4

sender: < >
receiver: < >
message: "vote"
args: ["a"]
signature: < >

vote: #a

user (platform object) ballot (smart contract)

nodes (running the Ballot contract)

message
replicated by network
ordered by consensus

logical perspective
objects and messages

distribution perspective
replicated copies and
messages

state update

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Security and Consensus

» User identity linked to public key
› Same public keys = same user

› User signs all messages using corresponding private key

» Consensus protocol establishes a unique global order
of messages
› Paxos, Byzantine Fault Tolerance (BFT)

› Proof of Work, Proof of Stake, …

5

sender: < >
receiver: < >
message: "vote"
args: ["a"]
signature: < >

Blockchain

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Decentralized Execution Model

6

vote: #a

user (platform object) ballot (smart contract)logical perspective
objects and messages

state update

Ballot >> vote: id

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

instance of class User
provided by platform, not modifiable

How can we add state & behavior?

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Decentralized Execution Model

7

Ballot >> vote: id

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

verify sender's signature

lookup/initialize sender and receiver objects

create checkpoint

watch for next message

[rollback on failure]

platform

contract

platform

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Decentralized Execution Model

8

platform

contracts

platform

independently developed
contracts sharing platform

objects

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Current Workaround: Mediator

» Lack of encapsulation

» Tendency to drift towards data classes and god-class
like mediator

9

Ballot >> vote: id

| user |

user := self voters at: sender address.

"check if enlisted and not voted"

self assert: user canVote.

"update state"

(self proposals at: id) addVote.

user voted: true.

Dictionary (voters) with user information

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Example in Practice (Solidity)

10

/// @title Voting with delegation.
contract Ballot {

// This declares a new complex type which will
// be used for variables later.
// It will represent a single voter.
struct Voter {

uint weight; // weight is accumulated by delegation
bool voted; // if true, that person already voted
address delegate; // person delegated to
uint vote; // index of the voted proposal

}

[…]

// This declares a state variable that
// stores a `Voter` struct for each possible address.
mapping(address => Voter) public voters;

[…]

https://solidity.readthedocs.io/en/v0.4.21/solidity-by-example.html

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Decentralized Execution Model

11

Ballot >> vote: id

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

verify sender's signature

lookup/initialize sender and receiver objects

create checkpoint

watch for next message

[rollback on failure]

We want to add behavior …

User >> canVote

^self eligible and:

[self voted not]

and state to a platform object
in the context of the voting activity

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts

12

Ballot >> vote: id

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

Ballot >> User >> canVote

^self eligible and:

[self voted not]

extend User objects in the context of Ballot
(= during the voting activity)

behavior and state visible in control flows
originating from Ballot

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts

13

Ballot >> vote: id

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

Ballot >> User >> canVote

^self eligible and:

[self voted not]

Ballot >> User >> eligible

<activityAccessor>

^false

Ballot >> User >> voted

<activityAccessor>

^false

state (accessors)

default value (when the object enters
the activity first)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts: Dynamic Extent

14

Activity 1 (Mediator) Platform object Another Object

Definition of additional
state & behavior

Object viewed during execution

Dynamic extent

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts: State Scoping

15

Ballot >> User >> eligible

<activityAccessor>

^false

Ballot >> User >> voted

<activityAccessor>

^false

Platform objects may be immutable,
where do we store state?

State remains (lexically) scoped to
the activity

u voted: true

a set: #voted to: true for: u

a u

(effective behavior of activityAccessor)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts: State Scoping

16

Ballot >> User >> eligible

<activityAccessor>

^false

Ballot >> User >> voted

<activityAccessor>

^false

Platform objects may be immutable,
where do we store state?

State remains (lexically) scoped to
the activity

u voted

a get: #voted for: u

a u

(effective behavior of activityAccessor)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts: Names

17

ActivityA >> User >> eligible

<activityAccessor>

^false

ActivityB >> User >> eligible

<activityAccessor>

^false

Activities can re-use the same name,
but always see their own state.

eligible has no meaning outside an activity.

UserActivityA ActivityB

critical, since code is
independently developed

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Uppercase >> Contract >> name

^self proceed toUppercase

Uppercase >> User >> name

^self proceed toUppercase

Recap: Layer-based COP

18

User >> address

^address

Uppercase >> User >> address

^self proceed toUppercase

Uppercase withLayerDo:

[Transcript show: user address]

proceed late-bound
to the next layer (or base method)

layer activation

partial methodbase method

layer Uppercase

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Activity Contexts vs. Layers

» Activity Contexts are objects
› Identity, state, behavior

› Communicating via messages

» Activity Contexts are layers
› Partial state/behavior for other objects

› Cross-cutting (adapts multiple objects/classes at once)

› Run-time activation and composition

» Subtle differences
› State per activity (neither layer, nor layered object)

› Composable with layers, but not other ACs (i.e., no
proceed/next between activities)

19

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Layers within Activities

» Can we exploit composability of layers (and Activity
Contexts) to further improve contract code?

20

Ballot >> vote: id

self assert: self open.

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

Ballot >> startPoll

self assert: sender isPollLeader.

self open: true.

Ballot >> initialize

"contract constructor"

sender isPollLeader: true.Role (of a user)

State (of the activity)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Roles as Layers

21

» Replace role checks by layer with role-specific
behavior

Ballot >> startPoll

self assert: sender isPollLeader.

self open: true.

Ballot >> initialize

"contract constructor"

sender isPollLeader: true.

PollLeader >> Ballot >> startPoll

self open: true.

Ballot >> initialize

"contract constructor"

sender attach: PollLeader activate Layer at instance

Layer definition
(startPoll invisible outside)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

State as Layers

22

» Replace state checks by layer with state-specific
behavior

Ballot >> vote: id

self assert: self open.

[…] "check if enlisted and not voted"

[…] "update state"

Ballot >> startPoll

self assert: sender isPollLeader.

self open: true.

PollOpen >> Ballot >> vote: id

[…] "check if enlisted and not voted"

[…] "update state"

Ballot >> startPoll

self assert: sender isPollLeader.

self attach: PollOpen. activate Layer at activity

Layer definition
(vote: invisible outside)

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Layers in Smart Contracts

23

PollOpen >> Ballot >> vote: id

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

PollLeader >> Ballot >> startPoll

self attach: PollOpen.

Ballot >> initialize

"contract constructor"

sender attach: PollLeader

Ballot >> vote: id

self assert: self open.

"check if enlisted and not voted"

self assert: sender canVote.

"update state"

(self proposals at: id) addVote.

sender voted: true.

Ballot >> startPoll

self assert: sender isPollLeader.

self open: true.

Ballot >> initialize

"contract constructor"

sender isPollLeader: true.

Traditional contract Roles and state as layer

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Layer Activation Mechanisms in Use

24

PollLeader >> Ballot >> startPoll

self attach: PollOpen.

Ballot >> initialize

"contract constructor"

sender attach: PollLeader
layer activation scoped to

specific instance (sender "sees"
layer whenever control flow

enters its scope)

SomeLayer withLayerDo: […]

SomeLayer activate.

activation during control flow

global activation

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Limitations and Outlook

» Tooling: Arrange code in a useful way

» Use cases: Explore additional smart contract types
› (Blind) Double auctions

› Decentralized Market places

› Supply chain ledgers

› …

» Integration: Explore how to target existing smart
contract platforms (e.g. EVM on the Ethereum
Blockchain)

25

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Summary

» Activity Contexts have layer and
object personalities

» ACs are a tool to decompose
large mediators, such as smart
contracts, back into smaller
responsibilities
› Restore encapsulation

› Scope extensions to activity only

» Layers integrate with ACs and
can provide further modularity

26

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Backup Slides

27

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Implementation

28

Activity >> a

Object >> c

Activity >> Object >> c

#a

#b

#Object@c

Activity >> b

Method Dictionary

Activity Context Class

Method Dictionary

Object Class

Object >> b

Generic Dispatcher

Object >> c

Generic Dispatcher

#b

#c

Only platform change: provide
generic dispatchers (also
doesNotUnderstand)

CompiledMethod

Mattis, Hirschfeld | COP’18, Amsterdam | Software Architecture Group, HPI Potsdam

Implementation

29

Activity >> a

Object >> b

Object >> c

Act. >> Obj. >> c

Generic Dispatcher

Check active activities on call stack.
Dispatch to the top-most that handles
the invocation (e.g. #Object@c)

