Ambiguous, Informal, and Unsound: **Metaprogramming for Naturalness**

Toni Mattis, Patrick Rein, Robert Hirschfeld

Software Architecture Group Hasso Plattner Institute, University of Potsdam, Germany

META'19 20 Oct. 2019, Athens, Greece

Rectangle >> drawOn: aCanvas
 self visible ifTrue:
 [aCanvas paint: self bounds
 color: self color]

Rectangle >> drawOn: aCanvas
 self visible ifTrue: [aCanvas paint: self bounds
 color: self color

```
Penguin >> slipOn: anIceFloe
  self clumsy ifTrue: [
    anIceFloe paint: self bounds
        color: self color]
```


HPI

Primary notation

Behaviorally significant

Secondary notation

Perceptually significant

Primary notation

Behaviorally significant

Secondary notation

Perceptually significant

Rectangle.>>.drawOn*.	aCa	nvas
self visible ifTrue	•	
[aCanvas]paint: se	lf	bounds
color: se	lf	color

<pre>Rectangle >></pre>	drawOn: aCa	anvas	
self visible ifTrue:			
[aCanvas	<pre>paint: self</pre>	bounds	
' ← → `	color: self	color]	

- » Formal, unambiguous
- » Soundness guarantees
- Accessible through Metaprogramming

- » Informal, ambiguous
- » Used inconsistently
- » Subject to (approximate) interpretation

Primary notation

Behaviorally significant

Secondary notation

Perceptually significant

Examples of Secondary Notation

Comments

"Re-**draw** when invalidated"

404 'error.log'

Values

HP

Machine Learning (ML) Example: Word Embedding

Mattis, Rein, Hirschfeld | META, Athens, 2019 | Software Architecture Group, HPI Potsdam

Mattis, Rein, Hirschfeld | META, Athens, 2019 | Software Architecture Group, HPI Potsdam

. . .

Mattis, Rein, Hirschfeld | META, Athens, 2019 | Software Architecture Group, HPI Potsdam

Meta-objects

Reified representations of a program's (formal) elements

Rectangle

m := Rectangle methodDict at: #drawOn:

m parseTree body first

a CompiledMethod

a Class

The first statement of m

Representing Meta-objects

A Framework for "Meaning"

Comparing Meanings

Test Prioritization

HPI

Comparing Meanings

Test Prioritization

HP

Implementation

Replace **self tests** in the **run** method with call to:

TestSuite >> prioritizedTestsGiven: aMethodChange

changeMeaning changeMeaning := aMethodChange newMethod meaning. ^ self tests sorted: [:testMethod1 :testMethod2 |

(testMethod1 meaning <-> changeMeaning)

> (testMethod2 meaning <-> changeMeaning)]

Faster Feedback Through Lexical Test Prioritization hirschfeld@hpi.uni-potsdam.de Hasso Plattner Institute Immediacy and continuity of feedback are desirable during P University of Potsdam gramming activities. Automated tests, often manifesting themsel toni.mattis@hpi.uni-potsdam.de Toni Mattis 1 INTRODUCTION as unit tests, are a best practice to receive feedback on whether Germany as whit lesis, are a vest practice to receive recurack on whether lest authors' expectations are consistent with the implement Hasso Plattner Institute at hand. With growing test suites and, consequentially, longe University of Potsdam ar name, with growing test sumes and, consequentially, tong cution times, feedback becomes less immediate and is obtain align and continuity of feedback are desirable properties durmon sinces, recursive versions reso minemax and is versal, and the benefits of fr Automated tests are a widely used practice to test authors' expectations are consis-ABSTRACT wing test suites, feedback untly because

Mattis, Rein, Hirschfeld | META, Athens, 2019 | Software Arc

Robert Hirschfeld

Hasso Plattner Institute University of Potsdam

Composition

m1 meaning composeWith: m2 meaning
Meaning composedFrom: {m1. m2. ... }

- » Represent classes as composition of name, fields, doc-string, and methods
- » Represent changes as composition of modified metaobjects

Destructuring Composition

Not all models allow immediate composition
 (e.g. addition in vector space vs. maximum-likelihood)

Use Cases

- » Test Prioritization
- » Refactoring [s. Paper]
- » Metrics/Linting
 - Intra-class similarity ~ cohesion
 - Inter-class similarity ~ coupling
- » Code Completion
 - Incomplete code without valid meta-object representation can have a representation in the model

Implementation: Scope model := LDAModel trainOn: #package alpha: 0.05 beta: ... model do: ["The LDA model is valid here"] Model >> do: aBlock ^ActiveModel value: self during: aBlock Dynamic variable CompiledMethod >> meaning ^ActiveModel value meaningOfMethod: self **Double dispatch** back to dynamic Class >> meaning variable ^ActiveModel value meaningOfClass: self model meaningOf: anObject More explicit?

Implementation: Minimal Core

- » A Model only needs to...
 - represent features
 (lexical tokens in identifiers, strings, symbols)
 - > provide composition and comparison
- » Default implementations (via double dispatch)
 - > Methods as composition of identifiers
 - > Classes as composition of name, fields, and methods
 - > ...

Meta-objects?

Java/.NET/C[++]

Mattis, Rein, Hirschfeld | META, Athens, 2019 | Software Architecture Group, HPI Potsdam

HPI

Conclusion

- » Programs are "natural" artifacts of human communication
- » "Natural" properties are usable through ML but not reified in metaprogramming, yet
- » We explored designs to expose "ML/NLP knowledge" at metaobject level
- » How do we want to use secondary notation & meaning through metaprogramming?

Mattis, Rein, Hirschfeld | META, Athens, 2019 | Software Architecture Group, HPI Potsdam