
RTPTorrent: An Open-source Dataset
for Evaluating Regression Test Prioritization

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

toni.mattis@hpi.uni-potsdam.de

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Falco Dürsch
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
The software engineering practice of automated testing helps pro-
grammers find defects earlier during development. With growing
software projects and longer-running test suites, frequency and
immediacy of feedback decline, thereby making defects harder to
repair. Regression test prioritization (RTP) is concerned with run-
ning relevant tests earlier to lower the costs of defect localization
and to improve feedback.

Finding representative data to evaluate RTP techniques is non-
trivial, as most software is published without failing tests. In this
work, we systematically survey a wide range of RTP literature
regarding whether their dataset uses real or synthetic defects or
tests, whether they are publicly available, and whether datasets
are reused. We observed that some datasets are reused, however,
many projects study only few projects and these rarely resemble
real-world development activity.

In light of these threats to ecological validity, we describe the con-
struction and characteristics of a new dataset, named RTPTorrent,
based on 20 open-source Java programs.

Our dataset allows researchers to evaluate prioritization heuris-
tics based on version control meta-data, source code, and test results
from fine-grained, automated builds over 9 years of development
history. We provide reproducible baselines for initial comparisons
and make all data publicly available.

We see this as a step towards better reproducibility, ecological
validity, and long-term availability of studied software in the field
of test prioritization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387458

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; •General and reference→ Evaluation; • Information
systems → Data mining.

KEYWORDS
Regression Test Prioritization, TravisCI, GitHub, Java, Dataset
ACM Reference Format:
Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld. 2020. RTP-
Torrent: An Open-source Dataset for Evaluating Regression Test Prioritiza-
tion. In 17th Intern ational Conference on Mining Software Repositories (MSR
’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3379597.3387458

1 MOTIVATION
Automated test suites for programs tend to grow continuously as
software evolves, accumulating not only new requirements, but also
an ever-growing amount of previously reproduced defects to pre-
vent their re-introduction. As automated testing becomes costlier,
developers shy away from running time-consuming test suites in
their development environments and Continuous Integration (CI)
infrastructure suffers longer build cycles. The benefits of obtaining
rapid feedback whether a change introduced a regression wane and
defects get harder to detect and repair [43].

The field of Regression Test Prioritization (RTP) addresses the
challenges of delayed feedback and computational costs caused by
long-running test cycles [69, 92]. RTP generally uses heuristics to
predict the fault-detection capability of individual tests or whole
test schedules.

Manifold RTP techniques have been proposed in recent years [69].
Devising general RTP techniques which are effective in a variety of
settings is challenging, as there are several trade-offs involved, for
example between the effort required for gathering data to inform
the prioritization, and the actual gains of the prioritization. The
requirement of being applicable in a wide range of settings, and the
fact that RTP generally uses heuristics, renders the evaluation of
RTP techniques difficult [38, 72].

State of the Art in Regression Test Prioritization. Most evalua-
tion studies on the effects of a particular RTP techniques require a

https://doi.org/10.1145/3379597.3387458
https://doi.org/10.1145/3379597.3387458

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld

dataset that includes the source code of a program, a pool of test
cases, and a set of faults. In concordance with the goal of the eval-
uation, these datasets should either have well-known properties
to allow for controlled experimentation, or resemble real-world
projects to assess the utility of techniques under real-world condi-
tions. Further, datasets should be archived and openly available to
make the results of different studies comparable [15].

In order to assess the current state of the art in RTP evaluation
studies, we conducted a literature survey, which we describe in
section 2. Our survey showed considerable reuse of datasets in
the community. At the same time, it showed that most datasets
contain a limited number of projects and many of these projects
can not be considered to resemble real-world projects. While this
might be desirable for controlled experiments in order to assess
the theoretical performance of RTP techniques, it does at the same
time impede the ecological validity of the results.

An Open Dataset. To complement existing datasets designed for
controlled environments or synthetic test runs, we introduce the
RTPTorrent dataset consisting of 20 open-source Java projects
from GitHub with more than 100 000 real-world build jobs from the
TravisCI continuous integration infrastructure1. Compared to all
Java projects currently hosted on GitHub, these projects span a wide
range with regard to size, number of contributors, and maturity.
In section 3, we describe project selection, properties, qualitative
characteristics, and our acquisition process.

Non-trivial Baseline. We run a micro-study implementing an
effective prioritization heuristic based on test failure history to
demonstrate the use of our dataset.We present its results in section 4
and include them in the dataset to provide a non-trivial baseline
that complements commonly used random and default test-runner-
determined baselines.

Contributions. In summary, our contributions comprise:
• A systematic review of datasets used throughout RTP litera-
ture from the perspective of re-using their study subjects and
reproducing their results as baselines for future research.

• A novel Java-based open-source dataset addressing the con-
cerns emerging from the literature study.

• A quantitative description of selected projects, including
their representativeness with respect to all Java projects on
GitHub.

• A prioritization micro-study that can serve as non-trivial
baseline.

2 STATE OF THE ART DATASETS FOR TEST
PRIORITIZATION

Datasets are important for the evaluation of RTP techniques, as
the properties of the dataset might influence the impact on the
performance of a RTP technique in practice. At the same time, the
advancement of the field depends on comparable evaluations, which
in turn requires that studies are conducted using common datasets.
In order to assess the state of the art in datasets for RTP evaluation,
we characterized the internal qualities of the used datasets, as well
as the degree to which datasets are shared and archived. Therefore,

1The dataset is available at doi.org/10.5281/zenodo.3712290.

we conducted a literature survey with regard to the following three
research questions:

(1) What kind of projects, test cases, and faults are used to
evaluate RTP techniques?

(2) Which datasets are shared amongst evaluation studies of
RTP techniques?

(3) To which degree are the datasets available?

2.1 Methodology
In general, we followed the SALSA (Search, AppraisaL, Synthesis,
Analysis) process for conducting the literature survey [34]. In the
following, we describe the individual steps of the process and the
respective intermediate sizes of the set of candidate publications.

Search. As the goal of the survey was to investigate datasets
used for current research on RTP, we strove for a complete survey.
As an initial sample we used the literature cited in a recent survey
on RTP [69].

In order to get a complete picture of the current situation, we also
retrieved all publications of selected publication venues since 2009,
assuming that any regularly used datasets will also be used in recent
publications. We selected the publication venues to retrieve the ad-
ditional publications by choosing prominent software engineering
publication venues and adding venues which published prominent
papers in the field of RTP. Overall, we added publications from:
Conference on Mining Software Repositories (MSR), Conference
on the Foundations of Software Engineering (FSE), International
Conference on Software Engineering (ICSE), International Sym-
posium on Software Testing and Analysis (ISSTA), Symposium
On Applied Computing (SAC), Tests and Proofs Conference (TAP),
Journal of Systems and Software (JSS), International Conference
on Software Security and Reliability / Secure Software Integration
and Reliability Improvement (SSIRI/SERE).

We retrieved the bibliographic information of the publications of
these venues through dblp2. We first fetched the full list of each pub-
lication venue via the corresponding overview page (for example
dblp.uni-trier.de/db/conf/msr/msr2019.html), while accounting for
special editions of the venue. We then parsed each page, extracted
the URLs of the corresponding Bibtex resources, and downloaded
the bibliographic information.

Combined with the literature from the survey [69], we retrieved
a set of 10 308 publications.

Appraisal. We were interested in publications specifically work-
ing on RTP. Thus, in an initial step, we reduced the number of
publications by only selecting papers which included “test”, “priori-
tiz”, or “prioritis” in title or keywords. This reduced the candidate
set to 1 484 publications (of which 1290 stem from our search, 205
from the 2019 survey, and 11 appeared in both sets).

In a second step, we reviewed each remaining candidate publica-
tion on whether it refers to general regression test prioritization. In
particular, we rejected works on test suite reduction, test selection,
or test case generation. Publications which described any of these
approaches in combination with RTP were accepted. Further, as we
were interested in datasets which are used for assessing general-
purpose RTP approaches, we also excluded approaches targeting
2https://dblp.uni-trier.de

doi.org/10.5281/zenodo.3712290
dblp.uni-trier.de/db/conf/msr/msr2019.html
https://dblp.uni-trier.de

RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

specific application domains, such as web service composition or
mobile applications, or special types of tests, such as manual tests
or feature interaction tests.

Finally, we removed all papers which did not describe a study
using a dataset of projects including source code. The resulting set
of publications considered in the survey includes 117 publications.

Synthesis. To characterize the publications, we used thematic
analysis [8]. When characterizing datasets, we surveyed each study
reported in a publication separately. For research questions 1 and
3, we coded the publications using a pre-defined coding scheme
(applying a theoretical thematic analysis [8]). We describe the indi-
vidual dimensions and codes in section 2.2. In detail, the nature of
programs, variants/versions, and faults are a recurring theme that
tends to provoke discussions about validity and generality of RTP
studies [19]. Moreover, the broad availability of fine-grained pro-
gram versions (GHTorrent) and real build logs (TravisTorrent) calls
the argument that manual or synthetic/generated data be easier to
obtain into question, which prompted us to focus on these proper-
ties. We extended this to the nature of the tests used in studies, as
these are also relevant for history-based approaches. The number of
projects per dataset is a general aspect relevant to empirical studies.
Finally, the degree of availability of datasets originates from our
own difficulties of replicating previous work.

Our initial choice of codes was subject to little subjectivity, as
authors state what data they use for evaluation (for example, “...vari-
ants of the program where faults have been seeded manually” [66]).
The data was coded by one coder. Whenever a code could not
be assigned unambiguously, we discussed the ambiguity with co-
authors with the goal to refine the coding scheme, then re-coded
the previous papers using the updated rules.

For research question 2, we first collected all existing datasets
mentioned in publications. Then we derived individual names for
the datasets, and finally coded the publications by assigning these
names (thereby applying inductive thematic analysis [8]). In case a
study used projects from several datasets, we coded the individual
numbers of projects from each dataset.

Analysis. As we did not approach the literature survey with
a specific hypothesis, we did not employ a fixed-setup analysis.
Instead, we observed general patterns in the data (for the discussion
of the results see section 2.3).

2.2 Classification of Datasets
Throughout the dimensions, we assume that a dataset consists of a
number of software projects. These might come in different variants
such as releases, commits, or generated mutants. Further, for each
project there can be a number of tests.

In the following, we describe the single dimensions, the codes
(For each dimension and code, we also provide the column name
and symbol used in table 1.)

Research Question 1. To answer the first research question, we
used the following dimensions with the described codes to charac-
terize datasets:

Overall number of projects (#Proj) Large sample sizes al-
low for a larger variation in project properties and thus
influence the conclusions which can be drawn from studies.

Thus, we report the number of projects included in each
dataset. This number does not include different releases or
versions of a single project; these are counted as variants
(see below).

Nature of projects (Syn?) Wedeterminedwhether the projects
used in the dataset have only been created for research pur-
poses or whether they have been in actual use. While syn-
thetic projects allow researchers to design projects with
controlled properties, they are also a threat to the ecological
validity of an evaluation. In contrast, projects which have
been in actual use are more difficult to obtain and might vary
widely in their properties.
synthetic (◦) Synthetic projects have been created for other

purposes than actual usage, this also includes projects
resulting from university courses.

real (empty cell) Real projects are projects which have been
created for actual usage. They do not have to be in use any-
more. Further, this does not entail that the project evolved
over a longer period.

Origin of tests As the evaluation of RTP approaches always
relies on pools of test cases, we determine how the tests
being used have been created. While manually created tests
may be equivalent to historic tests in some scenarios, studies
on historic test cases have a higher ecological validity.
historic () The project includes tests created as part of the

evolution of the project
manual (Ò) The tests were created manually, but not during

the evolution of the project.
generated (3) An automatic test generation tool was used

to generate the tests.
Origin of variants Some RTP approaches require several vari-

ants of a program to gather data used in the prioritization.
For example, many prioritization techniques require sev-
eral faulty versions, and history-based techniques require a
change history.
historic () The variants used in the study are the result of

the actual evolution of the project. This includes variants
on several levels such as releases, snapshots, as well as
commits.

manual mutants (Ò) Different variants of the project source
code were created manually, but not as part of the devel-
opment of the project.

generated mutants (3) Some mutant generation tool was
used to automatically generate mutants.

Origin of faults Previous work has shown, that for some pri-
oritization techniques mutation faults can be used as a re-
placement for real, historic faults [19]. At the same time,
manually seeded or generated faults pose a threat to the
external validity of a study, as the historic set of fault of
real-world projects might have extreme properties.
historic () The faults are a result of the evolution of the

project. This also includes studies in which the test suite
of a newer version of a project is run on an older version.

manual (Ò) The faults were manually seeded.
generated (3) The faults were generated.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld

Table 1: of all publications used in the literature survey described in section 2. A detailed description of the columns and
symbols (resp. the dimensions and codes) can be found in section 2.2.

Key Year #Proj Syn? Tests Variants Faults Dataset C V T R Archived

[64] 2014 4 ,Ò Ò,3 3 SIR𝑗𝑎𝑣𝑎 (1)
[74] 2008 2 Ò, Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓ ✓

[39] 2013 12 3,,Ò Ò, ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝑗𝑎𝑣𝑎 (4), SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓

[45] 2010 1 Ò Ò SIR𝐺𝑁𝑈 (1) ✓ ✓ ✓

[48] 2006 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠

[73] 2013 1 ◦ Ò Ò Ò

[59] 2010 8 3,Ò Ò ,Ò SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[2] 2013 1 Ò Ò ✓ ✓

[25] 2001 1 3,Ò Ò space ✓ ✓ ✓

[41] 2016 5 Ò 3 SIR𝐺𝑁𝑈 (5) ✓ ✓

[58] 2002 8 3,Ò Ò ,Ò siemens, space
[68] 2018 2 GSDTSR ~ ~ ~ ✓ ~
[71] 2016 8 3 ✓ ✓

[83] 2018 10 ,Ò Ò, ,Ò SIR𝐺𝑁𝑈 (5), defects4j (5) ✓ ✓ ✓ ~
[94] 2015 8 SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓

[107] 2008 1 3 ∅ ? ✓ ∅
[115] 2016 1 ,Ò ∅ ? ∅
[119] 2012 3 ,Ò Ò, Ò,? SIR𝑗𝑎𝑣𝑎 (1) ✓

[125] 2013 4 Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[6] 2012 1 WebKit ✓ ✓ ✓ ✓

[10] 2011 1

[17] 2005 4 Ò,,3 Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[44] 2008 1 ◦ 3 Ò Ò

[61] 2008 6 ~ 3,Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (1)
[62] 2005 3 ◦ 3 Ò Ò

[79] 2013 1

[92] 1999 7 Ò Ò Ò siemens
[111] 2006 1 3 Ò SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓ ✓ ✓

[127] 2009 2 Ò, Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓ ✓

[3] 2013 2 ? ,3 3

[27] 2011 1 ?
[60] 2009 7 ~ 3,Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (1)
[77] 2012 1 3 Ò

[84] 2013 1 ,Ò

[91] 2013 3 Ò Ò,,3 3,Ò SIR𝐺𝑁𝑈 (3) ✓ ✓

[95] 2008 3 Ò Ò Ò ✓

[98] 2010 1 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (1) ✓ ✓ ✓ ✓

[12] 2016 5 3 ∅ 3 ✓ ∅
[56] 2012 10 ,3 3, ✓ ✓

[70] 2015 3 ✓ ✓

[85] 2015 5 defects4j ✓ ✓ ✓ ✓

[97] 2007 1

[106] 2012 3 ◦ 3 3 3 ✓

[108] 2016 1

[20] 2008 5 Ò,3 3,Ò SIR𝑗𝑎𝑣𝑎 (5) ✓ ✓ ✓ ✓

[28] 2015 6 ,Ò Ò, ,Ò SIR𝐺𝑁𝑈 (5) ✓ ✓ ✓

[81] 2009 2 Ò, ,Ò SIR𝑗𝑎𝑣𝑎 (1)
[101] 2017 3 ✓ ✓

[104] 2002 3 ∅
[113] 2006 2 ~ ,Ò 3 3 ~ ~
[120] 2009 7 3,Ò Ò, ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (2), SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝐺𝑁𝑈 (2) ✓ ✓ ✓ ✓

[124] 2014 6 3,Ò Ò ,Ò SIR𝐺𝑁𝑈 (3), SIR𝑆𝑝𝑎𝑐𝑒 , SIR (1) ✓

[126] 2009 2 Ò, 3,Ò SIR𝑗𝑎𝑣𝑎 (1) ✓ ✓

[53] 2009 11 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝐺𝑁𝑈 (4) ✓ ✓

[65] 2009 7 Ò Ò Ò siemens
[99] 2007 6 ? ? ? ?
[24] 2001 8 3,Ò Ò ,Ò siemens, space
[52] 2015 4 Ò Ò, Ò SIR𝐺𝑁𝑈 (4) ✓ ✓ ✓ ✓

[78] 2015 3

[129] 2016 11 Ò Ò,3 3,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓

[50] 2010 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[4] 2018 3 ,Ò ✓ ✓ ✓

RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Key Year #Proj Syn? Tests Variants Faults Dataset C V T R Archived

[57] 2017 2 ✓ ~ ~
[100] 2009 8 ? ? ?
[122] 2011 8 3,Ò Ò,,3 3,,Ò SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓

[14] 2012 2

[114] 2015 4 Ò Ò, Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (2), SIR𝐺𝑁𝑈 (2) ✓ ✓ ✓ ✓

[128] 2014 1 3, ∅ ✓ ∅ ✓

[9] 2016 1

[11]a 2018 50 3 ✓ ✓ ✓

[11]a 2018 11

[18] 2006 5 Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[72] 2016 30 3 3 ✓ ✓

[116] 2017 7 ,3 3, ✓ ✓

[7] 2015 1 ✓ ✓ ✓

[67]a 2013 8 3,,Ò ? ? SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (6), SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝐺𝑁𝑈 (1) ✓ ? ✓

[67]b 2013 1 ? ? ~ ~ ~
[86] 2015 6 Ò Ò, Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (2), SIR𝐺𝑁𝑈 (4) ✓ ✓ ✓

[123] 2015 4 ,Ò ? ? ✓ ? ✓

[90] 2008 1 Ò Ò SIR𝑗𝑎𝑣𝑎 (1) ✓ ✓ ✓ ✓

[30] 2009 8 3,Ò Ò ,Ò SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[75] 2010 5 3,Ò Ò ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (4), SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓ ✓

[87] 2016 15 ~ ,Ò Ò,,3 3,Ò SIR (9), SIR𝑗𝑎𝑣𝑎 (1) ✓ ✓

[66] 2012 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[21] 2006 4 Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[110] 2014 2 Ò, Ò SIR𝑗𝑎𝑣𝑎 (1), SIR (1) ✓ ✓ ✓ ✓

[40] 2016 1 ◦ Ò ∅ ∅ ✓ ∅
[63]a 2009 5 ◦ Ò

[63]b 2009 2 Ò Ò Ò

[63]c 2009 2 ∅

[80] 2011 1 ◦ Ò Ò Ò

[121] 2011 1 Ò Ò Ò siemens (1)
[42] 2016 2 3

[13] 2018 7 ~ 3 Ò Ò

[35] 2018 6 travistorrent ✓ ✓ ✓ ✓

[46] 2012 2 Ò Ò, Ò SIR𝐺𝑁𝑈 (2) ✓ ✓ ✓ ✓

[49] 2008 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[51] 2015 4 Ò Ò, Ò SIR𝐺𝑁𝑈 (4) ✓ ✓ ✓ ✓

[89] 2016 1 ✓ ✓ ✓

[96] 2016 5 Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (3), SIR (2) ✓ ✓

[102]a 2012 4 ◦ Ò Ò Ò

[102]b 2012 3 ∅ ∅
[117] 2018 4 ,Ò Ò, ,Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓ ✓

[31] 2013 2 3, Ò ~
[76] 2013 1 ◦ Ò Ò ∅ triangle ✓

[88] 2010 4 ◦ Ò Ò Ò

[105] 2008 1 ◦ Ò ∅ ? ✓ ∅ ✓ ✓

[32] 2011 11 3,Ò Ò, ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝐺𝑁𝑈 (3) ✓ ✓ ✓ ✓

[29] 2014 5 3 3 SIR (4) ✓ ✓

[1]a 2016 3 Ò Ò ✓ ✓

[1]b 2016 26 ◦ 3 Ò Ò

[103] 2014 4 ◦ Ò Ò Ò

[109] 2012 5 ◦ Ò Ò Ò ✓

[38] 2014 33 3, ,3 3 SIR𝑗𝑎𝑣𝑎 (4) ✓ ~
[16] 2010 5 Ò, Ò SIR𝑗𝑎𝑣𝑎 (5) ✓ ✓ ✓ ✓

[19]a 2006 4 Ò,3 3,Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[19]b 2006 2 Ò,3 3,Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓

[22] 2016 6 Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (6) ✓ ✓

[26]a 2002 8 3,Ò Ò,,3 ,Ò siemens, space
[26]b 2002 3 ,Ò Ò, ,Ò ~ ~ ~ ~
[36] 2013 6 ,Ò Ò, ,Ò ~ ~
[37]a 2016 10 3,,Ò Ò,,3 3,,Ò SIR𝑗𝑎𝑣𝑎 (2), SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓

[37]b 2016 5 ? ,3 3

[54] 2003 1 3,Ò Ò space
[82] 2012 4 Ò,,3 Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[93] 2001 8 3,Ò Ò,,3 3,,Ò siemens, space ✓ ~ ✓ ~

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld

Research Question 3. In order to approach the third research
question, we characterized to which degree the datasets used in
the studies are available. We distinguished between the general
availability of parts of the data set (code, variants, tests, test runs)
and whether the dataset was archived (archived):

Code (C) Is the source code of the project generally available?
This is particularly challenging for studies using industrial
projects or synthetic projects. Open-source projects used in
studies are often available by their very nature.

Variants (V) Is a set of variants of the project available that
includes the variants used in the project?

Tests (T) Are the tests available?
Test runs (R) Are the test runs and the corresponding results

available? This is relevant for some history-based techniques.
Archived We consider the data archived if the full data as it

was used can be retrieved from a website. If a study reuses an
existing dataset, and this original dataset was archived (for
example a SIR project), we count the dataset as archived only
if the material was used without further modification such
as the generation of mutants. In the special case of a study
using randomly generated test suites from an archived pool
of test cases, we still considered the data as being archived.

General Codes. We further used three generic codes throughout
all dimensions:

unspecified (?) The information is, to our knowledge, not ex-
plicitly disclosed in the publication.

none (∅) There is none of what the dimension describes. For
example, the study did not involve any variants of programs.

partially (~) The study falls in-between two binary codes.

2.3 Discussion
Based on the collected data (see table 1), we discuss general insights
with respect to our three research questions.

Research Question 1. While some studies use datasets containing
as many as 50 projects, the mean number of projects used per study
is 5.25 (𝑆𝐷 = 6.36). This might pose a threat to the external validity
of some of the studies, as the variation in project properties might
be smaller than what is to be expected from real-world settings.

Overall, the results show that only few studies incorporate syn-
thetic programs (15.1%). While most studies did primarily use real
projects, 21.4% of all studies used the Siemens programs [47]. While
these are not synthetic, the Siemens programs are limited, as they
are shorter than 1 000 LOC [15] 3.

With regard to the origin of the test cases, historic (54.8%) and
manual test case pools (47.6%) are most often used in studies. Pools
of generated test cases are only seldom used (23.0%). Notably, 26.2%
of all studies mixed projects with test cases of different origin,
although this might introduce a source of bias due to the different
properties of these test case pools.

The variants used in the studies are also mostly historic (51.6%)
and manual (56.3%). However, many of the historic variants are

3We classified the Siemens programs conservatively as real programs as the original
paper only describes them as being “obtained from various sources” [47].

at the granularity of releases. For example, all projects with his-
toric variants retrieved from SIR contain only releases as historic
variants.

Finally, most projects contain manually seeded faults (57.9%), fol-
lowed by historic faults (38.1%), and generated faults (22.2%). While
this indicates that historic faults are often explicitly considered in
studies, the percentage might also be a result of the fact that many
projects were retrieved through SIR (see below), which provides
some datasets which incorporate historic faults.

Research Question 2. We identified several datasets reused by
studies on RTP. Many of these (42.9%) were retrieved through
the Software-artifact Infrastructure Repository (SIR) [15]. Since
2015, studies also incorporated datasets from defects4j [55], trav-
istorrent [5], and the Google Shared Dataset of Test Suite Results
(GSDTSR) [23]. The most notable datasets are the the Siemens pro-
grams [47], the space program [112, 118], the SIR Java dataset [15],
and the SIR GNU dataset [15]. The siemens and the space datasets
were also used before they were made available through SIR.

Research Question 3. For many studies, in particular the ones
using open-source projects, the basic data for the study can be
considered available. At the same time, we can observe that datasets
have seldom been properly archived. Only 19.0% of the datasets in
the corpus are available through some form of archive (even given
our wide definition of archiving). Further, most of these archived
datasets (83.3%) are only considered archived because the described
study used an unaltered dataset from SIR.

2.4 Summary of State of the Art of Datasets for
Test Prioritization

SIR datasets are commonly used to evaluate RTP techniques and
only few other datasets are used or made available. Even with the
SIR datasets as a solid foundation for comparable experiments, the
number of projects per dataset remains limited. Further, most of the
test case pools, variants, and faults are manually created instead
of relying on historic, real-world data. Finally, the Siemens dataset
is commonly used, but the programs themselves are quite limited
and do not resemble present-day software projects [15].

3 DATASET
To improve the ecological validity of future RTP evaluations, we
propose to focus on real-world testing data from readily available
software projects. As a first step, we construct a new dataset of
open-source software projects and their fine-grained build data.

3.1 Projects
The RTPTorrent dataset contains 20 Java projects (listed in Ta-
ble 2). All of them are available on GitHub and have been using the
TravisCI build service. That means, both program evolution and
test runs are available and analyzable using the repository itself,
the GHTorrent dataset, and the TravisTorrent dataset [5, 33]. All test
results are within the time range covered by TravisTorrent (2007 –
2016).

Our selection requirements were that the projects (1.) be written
in Java due to frequent use in literature and large ecosystem of
analysis and instrumentation tools, (2.) have the highest-ranking

RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

job_id
commit_id

job_id
test
index
count
failures
errors
skipped

tree

commits

/<project>

<project>.csvbuilt_commits.csv

../repo/<project>

tr_job_id
…

TravisTorrent

… .java

int
string

int
int
int
int
int

sha1

Figure 1: Relational structure of the dataset with links to
TravisTorrent and the corresponding Git repository.

number of logged failures, and (3.) vary sufficiently in size and
maturity to represent a broad spectrum of GitHub’s community.

3.2 Structure
The dataset contains test results in relational form (see Figure 1)
and the full source code history as Git Version Control System (Git)
repositories.

Test results are available per build job. Builds run frequently
during program evolution, but can span more than a single Git
commit and spawn more than a single job (e.g. one per platform).

For each build job and each test case run during that build, we
provide the number of total, failed, errored, and skipped test meth-
ods4. To facilitate use in prioritization, we also provide the index,
which is the position in which the test case was originally run, and
the duration as logged by JUnit. Note that durations below Java’s
clock resolution are reported as 0.0 s (9.28 % of all test cases) and
17 negative durations occurred due to defects in the test runner.

Dataset Compatibility. We aim to make our dataset compatible
to the existing datasets GHTorrent and TravisTorrent without re-
dundantly mirroring their data. That means:

• Our job and build IDs in the dataset refer to the TravisTorrent
table (travistorrent_8_2_2017.csv), so that additional
build information (e.g. branch, timestamps) can be obtained
by joining.

• Our reported SHA1 hashes from Git commits are included in
the commits table of GHTorrent. Authors, GitHub projects,
associated pull requests and issues can be linked through
this connection.

Due to the fact that we constructed the dataset based on build
logs from 2007 to 2016, there are two limitations when linking to
external resources:

• Not all projects are available on GitHub at their original lo-
cations. Due to re-engineering efforts, some repositories are
merged into new projects that replace the original location.
Since multiple forks of each project exist, we were able to
archive the original repository from such a forked location
and verify that our build commits are included.

4Method-level results are usually not logged on TravisCI

0 200 400 600 800 1000

author count

104

pr
oj

ec
t

co
u

n
t

(a) Number of authors

0 20000 40000 60000 80000

commit count

101

106

pr
oj

ec
t

co
u

n
t

(b) Number of commits

Figure 2: Distribution of the number of authors and commits
over all Java projects on GitHub; black lines represent the
projects of our dataset.

• Not all commits are available in the Git repositories, since
proposed changes by contributors (pull requests, issue com-
mits) can be built and tested but rejected by code reviewers.
This affects 41 commits. The other 62 133 are part of the
repositories.

3.3 Project Characteristics
Size. We quantified the size of our projects by structural and pro-

cess metrics in Table 2. The number of lines and classes is computed
for all Java code files in the latest build. The number of Git commits
is the union over all commits built in the dataset, the sparkline il-
lustrates their distribution over 9 years. We further state how many
build jobs our dataset contains per project and the average number
of test cases, test methods, and failing test methods per job.

Project Maturity and Representativeness. We compare our dataset
to all Java projects in the GHTorrent5 dataset to illustrate relative
maturity and project size in relation to GitHub. Our projects have
received on average 11 324 commits by 128 authors, while all Java
projects on GitHub received on average 141 commits by 5 authors.
How the number of commits and authors are distributed with re-
spect to the background population can be seen in Figure 2. As
such, our dataset is biased towards larger and contribution-heavy
projects, which is acceptable, since test prioritization is of little
benefit in smaller or less mature projects.

Reliability. Our dataset contains observations from build logs.
Changes in the logging process or build configuration can alter
how tests are parsed, grouped, or ordered, which makes test runs
before and after such a change not directly comparable. In addition,
there might be multiple types of builds configured, such as different
platforms or different branches. They interleave since there is no

5Retrieved 2019-06-31

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld

Table 2: Project selection with size (computed over the most recently built version), commit activity (2007 – 2016), build jobs,
the average number of test cases (TC) and methods (TM) run and failing per build, and the average number of seconds (TC
Time) each test case was running

Project Lines Classes Activity Commits Builds TC TM TM Failing TC Time

Achilles 54 223 435 763 997 177.9 1373.41 5.46 0.6
DSpace 384 448 2025 3779 3338 62.94 708.18 2.37 2.1
HikariCP 13 868 69 1703 1662 28.28 117.59 0.57 2.0
LittleProxy 13 823 87 611 581 27.19 116.51 1.87 4.5
buck 562 536 3593 7147 1148 682.92 4052.42 3.48 2.1
cloudify 132 574 1024 11 078 5206 56.69 195.65 0.29 1.5
deeplearning4j 138 155 975 2607 1038 14.94 30.82 1.16 36.4
dynjs 57 184 724 531 1020 73.28 844.35 5.23 0.4
graylog2-server 127 161 1259 6136 10 622 129.33 943.18 0.1 5.7
jOOQ 351 209 1411 2006 3245 25.69 381.85 0.34 0.9
jade4j 10 288 148 374 932 38.51 258.86 7.55 0.1
jcabi-github 64 551 454 753 3241 171.29 605.47 0.55 4.0
jetty.project 346 354 1744 205 383 167.4 1468.23 3.26 5.0
jsprit 59 581 427 308 1089 86.55 997.14 1.13 0.3
okhttp 69 090 266 2308 9772 42.46 1195.77 1.62 3.8
optiq 243 064 1029 846 1808 44.16 1417.58 0.7 47.3
sling 673 484 4966 13 763 8552 181.9 1010.76 7.38 4.7
sonarqube 661 490 5486 5244 53 307 321.44 1948.13 0.68 3.0
titan 59 626 534 679 1075 46.51 478.03 5.97 68.5
wicket-bootstrap 42 352 524 1292 1110 46.1 159.93 32.74 0.3

way to distinguish them at build log or test level without resorting
to heuristics or parsing of build configurations.

Another major source of variability is the time over which builds
were collected. For most projects multiple years are included in
which they grew significantly. The nonlinearity of this evolution
can be seen at the example of the graylog2-server in Figure 3: From
2014 on, the number of test methods steeply rises. A bifurcation
in 2014 hints that a different build configuration runs significantly
more tests than the other configuration. The temporary drop in
test case classes in 2014, which did not affect the number of test
methods, indicates major re-engineering activity.

Timing data collected by TravisCI can be used to estimate the
effort of a single test, but the same test can be run on increasingly
powerful hardware over time and compete with an arbitrary num-
ber of concurrent build jobs. These sources of variability need to
be taken into account.

3.4 Data Procurement
Obtaining test-level data from build logs is challenging, as few tools
continue running in the presence of failures and output sufficient
information about succeeding tests. In TravisTorrent’s raw build
logs, we identified Maven Surefire and Facebook Buck as producing
the most usable output that always logs results from all test cases,
including the number of total, failing, erroring, and skipped test
methods with timing information.

An example of a Maven build log is given in Listing 1. We used
regular expressions to match which test is running and the fail-
ure and timing statistics. As a safety guard, we detect component

2012 2013 2014 2015 2016 2017

0

100

200

300

N
u

m
b

er
of

T
es

t
C

as
es

graylog2-server

0

500

1000

1500

N
u

m
b

er
of

T
es

t
M

et
h

o
d

s

Figure 3: Number of test cases (blue/left) and test methods
(red/right) per build in the graylog2-server project over time.

boundaries (lines of minuses) and, within each component, pair cor-
responding test announcements with their results on a best-effort
basis, as parallelization can announce multiple tests and then report
all their results in the order they launched.

4 DEMONSTRATION AND BASELINE
Our dataset exhibits properties that are absent from synthetic
datasets or projects observed only in large change increments. The
fine-grained historical structure of our dataset reflects how tests
respond to smaller changes and how real-world infrastructure is
being used, including (but not limited to) the following factors:

• manually triggered builds
• building external contributions (pull requests) before accept-
ing them

RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Listing 1: Excerpt from build log 56082549 of sonarqube, matched patterns highlighted.
...
[INFO] --
[INFO] Building SonarQube :: Server 5.2- SNAPSHOT
[INFO] --
...
Running org.sonar.server.es.request.ProxyDeleteRequestBuilderTest
Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.285 sec

- in org.sonar.server.es.request.ProxyDeleteRequestBuilderTest
Running org.sonar.server.search.QueryContextTest
Tests run: 12, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.016 sec

- in org.sonar.server.search.QueryContextTest
Running org.sonar.server.activity.index.ActivityResultSetIteratorTest
Tests run: 3, Failures: 2, Errors: 0, Skipped: 0, Time elapsed: 0.197 sec <<< FAILURE!

- in org.sonar.server.activity.index.ActivityResultSetIteratorTest
traverse_after_date(org.sonar.server.activity.index.ActivityResultSetIteratorTest) Time elapsed: 0.006 sec
<<< FAILURE!
org.junit.ComparisonFailure: expected : <14200[668]00000L> but was : <14200[704]00000L>
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java :62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java :45)
...

• streaks of repeatedly failing tests
• influence from configuration changes

We expect these phenomena to introduce noise and confounding
factors, but they have the potential to act as predictors as well.
To show the surprising effectiveness of using real-world patterns,
we studied the heuristic of prioritizing tests by how recently they
failed, also known as demonstrated fault effectiveness [58].

The purpose of this micro-study is to demonstrate the dataset in
action and provide a baseline ranking. The baselinemakes use of our
fine-grained build history without being too complex and provides
a non-trivial reference point other than random or unmodified test
schedules.

Demonstrated Fault Effectiveness. This heuristic assigns a priority
𝑃𝑡 (𝑛) to test 𝑡 in build number𝑛 as 𝑃𝑡 (𝑛) = 𝛼𝐹𝑡 (𝑛)+ (1−𝛼)𝑃𝑡 (𝑛−1)
with 𝑃 (0) = 0, where 𝐹𝑡 (𝑛) = 1 if the test 𝑡 failed in build 𝑛,
0 otherwise. We only include past builds that were not running
concurrently and fixed 𝛼 = 0.8 to focus on recent failures.

Measurements. The de-facto standard for evaluating test sched-
ules is the Average Percentage of Faults Detected (APFD) metric. It
measures how early faults are discovered. Given a test sequence 𝑇
and a set of faults 𝐹 where a fault 𝑓 is detected after 𝑇𝐹 (𝑓) tests:

𝐴𝑃𝐹𝐷 (𝑆, 𝐹) = 1 −
∑

𝑓 ∈𝐹 𝑇𝐹 (𝑓)
|𝑆 | × |𝐹 | + 1

2|𝑆 | (1)

Higher values correspond to earlier fault detection. If faults are
not synthesized, a test failure is often equated with a fault, since
telling apart distinct faults in real builds is hard to automate.

We quantified the APFD in our unprioritized dataset and addi-
tionaly provide a test schedule sorted by demonstrated fault effec-
tiveness to serve as baseline. Table 3 shows the average results and
their variability on a per-project basis and over all build jobs

Discussion. Although comparison with a wider range of exist-
ing prioritization strategies is out of scope, we observe that the
simple heuristic provides competitive ranking performance. We
attribute this property to the high resolution of our dataset, since

Table 3: APFD scores of the original builds and the demon-
strated fault effectiveness baseline, higher values are better.
Variability is given as histogram from 0 % to 100 %, density to
the right is better.

Build APFD Prioritized APFD

Project Mean [%] Dist. Mean [%] Dist.

Achilles 29.0 53.0
DSpace 34.7 80.9
HikariCP 58.5 69.0
LittleProxy 42.2 61.1
buck 50.0 96.5
cloudify 17.7 91.2
deeplearning4j 48.3 83.4
dynjs 45.7 58.2
graylog2-server 45.4 72.8
jOOQ 34.1 86.1
jade4j 47.8 63.2
jcabi-github 23.6 71.1
jetty.project 20.3 86.1
jsprit 46.7 62.0
okhttp 45.7 79.5
optiq 23.0 61.4
sling 2.5 94.7
sonarqube 36.4 74.4
titan 27.5 75.0
wicket-bootstrap 30.1 64.5

Dataset 25.9 81.1

we neither considered code nor change-related data as most pri-
oritization techniques do. We encourage researchers to compare
both history-aware and -oblivious heuristics when using such a
dataset, as observing human programming activities can sometimes
be a predictor that complements or outperforms formal relations
between test suites and code.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld

5 CONCLUSION AND OUTLOOK
The evaluation of RTP techniques can be challenging with regard
to balancing internal and external validity. The datasets on which
RTP techniques are evaluated play an important role in the external
validity of these studies.

Our literature survey showed that these evaluation studies reuse
existing datasets. However, at the same time, many datasets include
programs with limited scope and limited resemblance to real-world
projects.

In response to that, we proposed a new dataset, based on 20
open-source Java projects constructed from data from GHTorrent
and TravisTorrent. This dataset only consists of real-world data
resulting from the evolution of the projects. To make this dataset
accessible, we characterized the projects included in the dataset,
illustrated how the dataset can be used, and which limitations and
confounding factors researchers must expect. Finally, we provided
a non-trivial baseline for future evaluations of RTP techniques by
evaluating the peformance of the demonstrated fault effectiveness
heuristic on our dataset.

As next steps, the current scope of 20 projects could be ex-
tended to be more representative, and a comparison with propri-
etary projects would be needed to asses the validity of open source
findings in such settings. For future research, we hope that using
such a dataset can uncover discrepancies between “clean-room”
evaluations and the improvement they bring to real-world testing
situations and inspire prioritization heuristics that better model the
human nature of errors in development processes.

ACKNOWLEDGMENTS
This research is supported by the German Federal Ministry of Edu-
cation and Research (BMBF) KI-LAB-ITSE grant, the HPI Research
School for Service-oriented Systems Engineering, and the Hasso
Plattner Design Thinking Research Program.

REFERENCES
[1] Everton L. G. Alves, Patrícia D. L. Machado, Tiago Massoni, and Miryung Kim.

2016. Prioritizing test cases for early detection of refactoring faults. Softw. Test.,
Verif. Reliab. 26, 5 (2016), 402–426.

[2] Everton L. G. Alves, Patrícia D. L. Machado, TiagoMassoni, and Samuel T. C. San-
tos. 2013. A refactoring-based approach for test case selection and prioritization.
In AST. IEEE Computer Society, 93–99.

[3] Md. Junaid Arafeen and Hyunsook Do. 2013. Test Case Prioritization Using
Requirements-Based Clustering. In ICST. IEEE Computer Society, 312–321.

[4] Maral Azizi and Hyunsook Do. 2018. A collaborative filtering recommender
system for test case prioritization in web applications. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April
09-13, 2018. 1560–1567.

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent:
synthesizing Travis CI and GitHub for full-stack research on continuous in-
tegration. In Proceedings of the 14th International Conference on Mining Soft-
ware Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017. 447–450.
https://doi.org/10.1109/MSR.2017.24

[6] Árpád Beszédes, Tamás Gergely, Lajos Schrettner, Judit Jász, Laszlo Lango,
and Tibor Gyimóthy. 2012. Code coverage-based regression test selection and
prioritization in WebKit. In ICSM. IEEE Computer Society, 46–55.

[7] Yi Bian, Serkan Kirbas, Mark Harman, Yue Jia, and Zheng Li. 2015. Regression
Test Case Prioritisation for Guava. In SSBSE (Lecture Notes in Computer Science),
Vol. 9275. Springer, 221–227.

[8] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychol-
ogy. Qualitative research in psychology 3, 2 (2006), 77–101.

[9] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: an
industrial case study. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016. 975–980.

[10] Ryan Carlson, Hyunsook Do, and Anne Denton. 2011. A clustering approach
to improving test case prioritization: An industrial case study. In ICSM. IEEE
Computer Society, 382–391.

[11] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing test prioritization via test distribution
analysis. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018.
656–667.

[12] Jinfu Chen, Lili Zhu, Tsong Yueh Chen, Rubing Huang, Dave Towey, Fei-Ching
Kuo, and Yuchi Guo. 2016. An Adaptive Sequence Approach for OOS Test Case
Prioritization. In ISSRE Workshops. IEEE Computer Society, 205–212.

[13] Jinfu Chen, Lili Zhu, Tsong Yueh Chen, Dave Towey, Fei-Ching Kuo, Rubing
Huang, and Yuchi Guo. 2018. Test case prioritization for object-oriented software:
An adaptive random sequence approach based on clustering. Journal of Systems
and Software 135 (2018), 107–125.

[14] Pedro de Alcântara dos Santos Neto, Ricardo Britto, Thiago Soares, Werney
Ayala, Jonathas Cruz, and Ricardo A. L. Rabêlo. 2012. Regression Testing Pri-
oritization Based on Fuzzy Inference Systems. In SEKE. Knowledge Systems
Institute Graduate School, 273–278.

[15] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and
its Potential Impact. Empirical Software Engineering 10, 4 (2005), 405–435.
https://doi.org/10.1007/s10664-005-3861-2

[16] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2010.
The Effects of Time Constraints on Test Case Prioritization: A Series of Con-
trolled Experiments. IEEE Trans. Software Eng. 36, 5 (2010), 593–617.

[17] Hyunsook Do and Gregg Rothermel. 2005. A Controlled Experiment Assessing
Test Case Prioritization Techniques viaMutation Faults. In ICSM. IEEE Computer
Society, 411–420.

[18] Hyunsook Do and Gregg Rothermel. 2006. An empirical study of regression
testing techniques incorporating context and lifetime factors and improved
cost-benefit models. In SIGSOFT FSE. ACM, 141–151.

[19] Hyunsook Do and Gregg Rothermel. 2006. On the Use of Mutation Faults
in Empirical Assessments of Test Case Prioritization Techniques. IEEE Trans.
Software Eng. 32, 9 (2006), 733–752.

[20] Hyunsook Do and Gregg Rothermel. 2008. Using sensitivity analysis to create
simplified economic models for regression testing. In ISSTA. ACM, 51–62.

[21] Hyunsook Do, Gregg Rothermel, and Alex Kinneer. 2006. Prioritizing JUnit Test
Cases: An Empirical Assessment and Cost-Benefits Analysis. Empirical Software
Engineering 11, 1 (2006), 33–70.

[22] Sepehr Eghbali and Ladan Tahvildari. 2016. Test Case Prioritization Using
Lexicographical Ordering. IEEE Trans. Software Eng. 42, 12 (2016), 1178–1195.

[23] Sebastian Elbaum, AndrewMclaughlin, and John Penix. 2014. The Google Dataset
of Testing Results. https://code.google.com/p/google-shared-dataset-of-test-
suite-results

[24] Sebastian G. Elbaum, David Gable, and Gregg Rothermel. 2001. Understanding
and Measuring the Sources of Variation in the Prioritization of Regression Test
Suites. In IEEE METRICS. IEEE Computer Society, 169.

[25] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2001. Incor-
porating Varying Test Costs and Fault Severities into Test Case Prioritization.
In ICSE. IEEE Computer Society, 329–338.

[26] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2002. Test
Case Prioritization: A Family of Empirical Studies. IEEE Trans. Software Eng. 28,
2 (2002), 159–182.

[27] Emelie Engström, Per Runeson, and Andreas Ljung. 2011. Improving Regression
Testing Transparency and Efficiency with History-Based Prioritization - An
Industrial Case Study. In ICST. IEEE Computer Society, 367–376.

[28] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015.
Empirical evaluation of pareto efficient multi-objective regression test case
prioritisation. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015. 234–245.

[29] Chunrong Fang, Zhenyu Chen, Kun Wu, and Zhihong Zhao. 2014. Similarity-
based test case prioritization using ordered sequences of program entities. Soft-
ware Quality Journal 22, 2 (2014), 335–361.

[30] Yalda Fazlalizadeh, Alireza Khalilian, Mohammad Abdollahi Azgomi, and Saeed
Parsa. 2009. Incorporating Historical Test Case Performance Data and Resource
Constraints into Test Case Prioritization. In Tests and Proofs, Third International
Conference, TAP 2009, Zurich, Switzerland, July 2-3, 2009. Proceedings. 43–57.

[31] Deepak Garg, Amitava Datta, and Tim French. 2013. A novel bipartite graph
approach for selection and prioritisation of test cases. ACM SIGSOFT Software
Engineering Notes 38, 6 (2013), 1–6.

[32] Alberto González-Sanchez, Éric Piel, Rui Abreu, Hans-Gerhard Groß, and Arjan
J. C. van Gemund. 2011. Prioritizing tests for software fault diagnosis. Softw.,
Pract. Exper. 41, 10 (2011), 1105–1129.

[33] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (San Francisco,

https://doi.org/10.1109/MSR.2017.24
https://doi.org/10.1007/s10664-005-3861-2
https://code.google.com/p/google-shared-dataset-of-test-suite-results
https://code.google.com/p/google-shared-dataset-of-test-suite-results

RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

CA, USA) (MSR ’13). IEEE Press, Piscataway, NJ, USA, 233–236. http://dl.acm.
org/citation.cfm?id=2487085.2487132

[34] Maria Grant and Andrew Booth. 2009. A Typology of Reviews: An Analysis of
14 Review Types and Associated Methodologies. Health Information & Libraries
Journal 26, 2 (2009), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

[35] Alireza Haghighatkhah, Mika M"antyl"a, Markku Oivo, and Pasi Ku-
vaja. 2018. Test prioritization in continuous integration environments. Journal
of Systems and Software 146 (2018), 80–98.

[36] Shifa-e-Zehra Haidry and Tim Miller. 2013. Using Dependency Structures for
Prioritization of Functional Test Suites. IEEE Trans. Software Eng. 39, 2 (2013),
258–275.

[37] Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, and Tao Xie. 2016. To
Be Optimal or Not in Test-Case Prioritization. IEEE Trans. Software Eng. 42, 5
(2016), 490–504.

[38] Dan Hao, Lingming Zhang, Lu Zhang, Gregg Rothermel, and Hong Mei. 2014.
A Unified Test Case Prioritization Approach. ACM Trans. Softw. Eng. Methodol.
24, 2 (2014), 10:1–10:31.

[39] Dan Hao, Xu Zhao, and Lu Zhang. 2013. Adaptive Test-Case Prioritization
Guided by Output Inspection. In COMPSAC. IEEE Computer Society, 169–179.

[40] Ramzi A. Haraty, Nashat Mansour, Lama Moukahal, and Iman Khalil. 2016. Re-
gression Test Cases Prioritization Using Clustering and Code Change Relevance.
International Journal of Software Engineering and Knowledge Engineering 26, 5
(2016), 733–768.

[41] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing white-box and black-box test prioritization. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. 523–534.

[42] Charitha Hettiarachchi, Hyunsook Do, and Byoungju Choi. 2016. Risk-based
test case prioritization using a fuzzy expert system. Information & Software
Technology 69 (2016), 1–15.

[43] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 197–207.

[44] Shan-Shan Hou, Lu Zhang, Tao Xie, and Jiasu Sun. 2008. Quota-constrained
test-case prioritization for regression testing of service-centric systems. In ICSM.
IEEE Computer Society, 257–266.

[45] Yu-Chi Huang, Chin-Yu Huang, Jun-Ru Chang, and Tsan-Yuan Chen. 2010.
Design and Analysis of Cost-Cognizant Test Case Prioritization Using Genetic
Algorithm with Test History. In COMPSAC. IEEE Computer Society, 413–418.

[46] Yu-Chi Huang, Kuan-Li Peng, and Chin-Yu Huang. 2012. A history-based cost-
cognizant test case prioritization technique in regression testing. Journal of
Systems and Software 85, 3 (2012), 626–637.

[47] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. 1994. Experiments on
the effectiveness of dataflow- and control-flow-based test adequacy criteria. In
Proceedings of 16th International Conference on Software Engineering. 191–200.
https://doi.org/10.1109/ICSE.1994.296778

[48] Dennis Jeffrey and Neelam Gupta. 2006. Test Case Prioritization Using Relevant
Slices. In COMPSAC (1). IEEE Computer Society, 411–420.

[49] Dennis Jeffrey andNeelamGupta. 2008. Experiments with test case prioritization
using relevant slices. Journal of Systems and Software 81, 2 (2008), 196–221.

[50] Bo Jiang and W. K. Chan. 2010. On the Integration of Test Adequacy, Test Case
Prioritization, and Statistical Fault Localization. In QSIC. IEEE Computer Society,
377–384.

[51] Bo Jiang and Wing Kwong Chan. 2015. Input-based adaptive randomized test
case prioritization: A local beam search approach. Journal of Systems and
Software 105 (2015), 91–106.

[52] Bo Jiang, Wing Kwong Chan, and T. H. Tse. 2015. PORA: Proportion-Oriented
Randomized Algorithm for Test Case Prioritization. In QRS. IEEE, 131–140.

[53] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and T. H. Tse. 2009. Adaptive
Random Test Case Prioritization. In ASE. IEEE Computer Society, 233–244.

[54] James A. Jones and Mary Jean Harrold. 2003. Test-Suite Reduction and Prioriti-
zation for Modified Condition/Decision Coverage. IEEE Trans. Software Eng. 29,
3 (2003), 195–209.

[55] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database
of existing faults to enable controlled testing studies for Java programs. In
International Symposium on Software Testing and Analysis, ISSTA ’14, San Jose,
CA, USA - July 21 - 26, 2014. 437–440. https://doi.org/10.1145/2610384.2628055

[56] René Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2012. Using Non-
redundant Mutation Operators and Test Suite Prioritization to Achieve Efficient
and Scalable Mutation Analysis. In ISSRE. IEEE Computer Society, 11–20.

[57] Jeongho Kim, Hohyeon Jeong, and Eunseok Lee. 2017. Failure history data-
based test case prioritization for effective regression test. In Proceedings of the
Symposium on Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017.
1409–1415.

[58] Jung-Min Kim and Adam A. Porter. 2002. A history-based test prioritization
technique for regression testing in resource constrained environments. In ICSE.

ACM, 119–129.
[59] Sejun Kim and Jongmoon Baik. 2010. An effective fault aware test case prioriti-

zation by incorporating a fault localization technique. In ESEM. ACM.
[60] Bogdan Korel and George Koutsogiannakis. 2009. Experimental Comparison

of Code-Based and Model-Based Test Prioritization. In ICST Workshops. IEEE
Computer Society, 77–84.

[61] Bogdan Korel, George Koutsogiannakis, and Luay Ho Tahat. 2008. Application
of system models in regression test suite prioritization. In ICSM. IEEE Computer
Society, 247–256.

[62] Bogdan Korel, Luay Ho Tahat, and Mark Harman. 2005. Test Prioritization
Using System Models. In ICSM. IEEE Computer Society, 559–568.

[63] R. Krishnamoorthi and S. A. Sahaaya Arul Mary. 2009. Requirement Based
System Test Case Prioritization of New and Regression Test Cases. International
Journal of Software Engineering and Knowledge Engineering 19, 3 (2009), 453–475.

[64] Jung-Hyun Kwon, In-Young Ko, Gregg Rothermel, and Matt Staats. 2014. Test
Case Prioritization Based on Information Retrieval Concepts. In APSEC (1). IEEE
Computer Society, 19–26.

[65] Yves Ledru, Alexandre Petrenko, and Sergiy Boroday. 2009. Using String Dis-
tances for Test Case Prioritisation. In ASE. IEEE Computer Society, 510–514.

[66] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. 2012.
Prioritizing test cases with string distances. Autom. Softw. Eng. 19, 1 (2012),
65–95.

[67] Zheng Li, Yi Bian, Ruilian Zhao, and Jun Cheng. 2013. A Fine-Grained Parallel
Multi-objective Test Case Prioritization on GPU. In SSBSE (Lecture Notes in
Computer Science), Vol. 8084. Springer, 111–125.

[68] Jingjing Liang, Sebastian G. Elbaum, and Gregg Rothermel. 2018. Redefining
prioritization: continuous prioritization for continuous integration. In Proceed-
ings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. 688–698.

[69] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. Chapter One
- A Survey on Regression Test-Case Prioritization. In Advances in Computers,
Atif M. Memon (Ed.). Vol. 113. Elsevier, 1–46. https://doi.org/10.1016/bs.adcom.
2018.10.001

[70] Yiling Lou, DanHao, and Lu Zhang. 2015. Mutation-based test-case prioritization
in software evolution. In ISSRE. IEEE Computer Society, 46–57.

[71] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, DanHao, Yangfan Zhou,
and Lu Zhang. 2016. How does regression test prioritization perform in real-
world software evolution?. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 535–546.

[72] Qi Luo, Kevin Moran, and Denys Poshyvanyk. 2016. A large-scale empirical
comparison of static and dynamic test case prioritization techniques. In Pro-
ceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 559–570.

[73] Junpeng Lv, Bei-Bei Yin, and Kai-Yuan Cai. 2013. On the Gain of Measuring
Test Case Prioritization. In COMPSAC. IEEE Computer Society, 627–632.

[74] Zengkai Ma and Jianjun Zhao. 2008. Test Case Prioritization Based on Analysis
of Program Structure. In APSEC. IEEE Computer Society, 471–478.

[75] Camila Loiola Brito Maia, Rafael Augusto Ferreira do Carmo, Fabricio Gomes
de Freitas, Gustavo Augusto Lima de Campos, and Jerffeson Teixeira de Souza.
2010. Automated Test Case Prioritization with Reactive GRASP. Adv. Software
Engineering 2010 (2010), 428521:1–428521:18.

[76] Ruchika Malhotra and Divya Tiwari. 2013. Development of a framework for test
case prioritization using genetic algorithm. ACM SIGSOFT Software Engineering
Notes 38, 3 (2013), 1–6.

[77] Christoph Malz, Nasser Jazdi, and Peter Göhner. 2012. Prioritization of Test
Cases Using Software Agents and Fuzzy Logic. In ICST. IEEE Computer Society,
483–486.

[78] Dusica Marijan. 2015. Multi-perspective Regression Test Prioritization for
Time-Constrained Environments. In QRS. IEEE, 157–162.

[79] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization
for Continuous Regression Testing: An Industrial Case Study. In ICSM. IEEE
Computer Society, 540–543.

[80] S. A. Sahaaya Arul Mary and R. Krishnamoorthi. 2011. Time-Aware and
Weighted Fault Severity Based Metrics for Test Case Prioritization. Interna-
tional Journal of Software Engineering and Knowledge Engineering 21, 1 (2011),
129–142.

[81] Wes Masri and Marwa El-Ghali. 2009. Test case filtering and prioritization based
on coverage of combinations of program elements. In WODA. 29–34.

[82] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg Rothermel.
2012. A Static Approach to Prioritizing JUnit Test Cases. IEEE Trans. Software
Eng. 38, 6 (2012), 1258–1275.

[83] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST approaches to scalable similarity-based test case prioritization. In
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. 222–232.

[84] Daniel Di Nardo, Nadia Alshahwan, Lionel C. Briand, and Yvan Labiche. 2013.
Coverage-Based Test Case Prioritisation: An Industrial Case Study. In ICST.
IEEE Computer Society, 302–311.

http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1111/j.1471-1842.2009.00848.x
https://doi.org/10.1109/ICSE.1994.296778
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.1016/bs.adcom.2018.10.001

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld

[85] Tanzeem Bin Noor and Hadi Hemmati. 2015. A similarity-based approach for
test case prioritization using historical failure data. In ISSRE. IEEE Computer
Society, 58–68.

[86] Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea De Lucia.
2015. Hypervolume-Based Search for Test Case Prioritization. In SSBSE (Lecture
Notes in Computer Science), Vol. 9275. Springer, 157–172.

[87] Subhrakanta Panda, Dishant Munjal, and Durga Prasad Mohapatra. 2016. A
Slice-Based Change Impact Analysis for Regression Test Case Prioritization of
Object-Oriented Programs. Adv. Software Engineering 2016 (2016), 7132404:1–
7132404:20.

[88] Chhabi Rani Panigrahi and Rajib Mall. 2010. Model-based regression test case
prioritization. ACM SIGSOFT Software Engineering Notes 35, 6 (2010), 1–7.

[89] Jos'e Antonio Parejo, Ana B. S'anchez, Sergio Segura, Antonio Ruiz
Cort'es, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2016. Multi-
objective test case prioritization in highly configurable systems: A case study.
Journal of Systems and Software 122 (2016), 287–310.

[90] Hyuncheol Park, Hoyeon Ryu, and Jongmoon Baik. 2008. Historical Value-
Based Approach for Cost-Cognizant Test Case Prioritization to Improve the
Effectiveness of Regression Testing. In SSIRI. IEEE Computer Society, 39–46.

[91] Xiao Qu and Myra B. Cohen. 2013. A Study in Prioritization for Higher Strength
Combinatorial Testing. In ICST Workshops. IEEE Computer Society, 285–294.

[92] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
1999. Test Case Prioritization: An Empirical Study. In ICSM. IEEE Computer
Society, 179–188.

[93] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing Test Cases For Regression Testing. IEEE Trans. Software Eng.
27, 10 (2001), 929–948.

[94] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In ICSE (1). IEEE Computer Society, 268–279.

[95] Sreedevi Sampath, Renée C. Bryce, Gokulanand Viswanath, Vani Kandimalla,
and Akif Günes Koru. 2008. Prioritizing User-Session-Based Test Cases for Web
Applications Testing. In ICST. IEEE Computer Society, 141–150.

[96] Amanda Schwartz and Hyunsook Do. 2016. Cost-effective regression testing
through Adaptive Test Prioritization strategies. Journal of Systems and Software
115 (2016), 61–81.

[97] Mark Sherriff, Mike Lake, and LaurieWilliams. 2007. Prioritization of Regression
Tests using Singular Value Decomposition with Empirical Change Records. In
ISSRE. IEEE Computer Society, 81–90.

[98] Cristian Simons and Emerson Cabrera Paraiso. 2010. Regression test cases
prioritization using Failure Pursuit Sampling. In ISDA. IEEE, 923–928.

[99] Adam M. Smith, Joshua Geiger, Gregory M. Kapfhammer, and Mary Lou Soffa.
2007. Test suite reduction and prioritization with call trees. In ASE. ACM,
539–540.

[100] Adam M. Smith and Gregory M. Kapfhammer. 2009. An empirical study of
incorporating cost into test suite reduction and prioritization. In Proceedings of
the 2009 ACM Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA,
March 9-12, 2009. 461–467.

[101] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017.
Reinforcement learning for automatic test case prioritization and selection in
continuous integration. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 -
14, 2017. 12–22.

[102] Hema Srikanth and Sean Banerjee. 2012. Improving test efficiency through
system test prioritization. Journal of Systems and Software 85, 5 (2012), 1176–
1187.

[103] Hema Srikanth, Sean Banerjee, Laurie Williams, and Jason A. Osborne. 2014.
Towards the prioritization of system test cases. Softw. Test., Verif. Reliab. 24, 4
(2014), 320–337.

[104] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively prioritizing tests in
development environment. In ISSTA. ACM, 97–106.

[105] Praveen Ranjan Srivastava, Krishan Kumar, and G. Raghurama. 2008. Test case
prioritization based on requirements and risk factors. ACM SIGSOFT Software
Engineering Notes 33, 4 (2008).

[106] Matt Staats, Pablo Loyola, and Gregg Rothermel. 2012. Oracle-Centric Test Case
Prioritization. In ISSRE. IEEE Computer Society, 311–320.

[107] Heiko Stallbaum, Andreas Metzger, and Klaus Pohl. 2008. An Automated Tech-
nique for Risk-based Test Case Generation and Prioritization. In AST. ACM,
67–70.

[108] Per Erik Strandberg, Daniel Sundmark, Wasif Afzal, Thomas J. Ostrand, and
Elaine J. Weyuker. 2016. Experience Report: Automated System Level Regression

Test Prioritization Using Multiple Factors. In ISSRE. IEEE Computer Society,
12–23.

[109] Luay Ho Tahat, Bogdan Korel, Mark Harman, and Hasan Ural. 2012. Regression
test suite prioritization using system models. Softw. Test., Verif. Reliab. 22, 7
(2012), 481–506.

[110] Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein.
2014. Static test case prioritization using topic models. Empirical Software
Engineering 19, 1 (2014), 182–212.

[111] Paolo Tonella, Paolo Avesani, and Angelo Susi. 2006. Using the Case-Based
Ranking Methodology for Test Case Prioritization. In ICSM. IEEE Computer
Society, 123–133.

[112] Filippos I. Vokolos and Phyllis G. Frankl. 1998. Empirical Evaluation of the Tex-
tual Differencing Regression Testing Technique. In 1998 International Conference
on Software Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19,
1998. 44–53. https://doi.org/10.1109/ICSM.1998.738488

[113] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S.
Roos. 2006. TimeAware test suite prioritization. In ISSTA. ACM, 1–12.

[114] Rongcun Wang, Shujuan Jiang, and Deng Chen. 2015. Similarity-based regres-
sion test case prioritization. In SEKE. KSI Research Inc. and Knowledge Systems
Institute Graduate School, 358–363.

[115] Shuai Wang, Shaukat Ali, Tao Yue, Øyvind Bakkeli, and Marius Liaaen. 2016. En-
hancing test case prioritization in an industrial setting with resource awareness
and multi-objective search. In ICSE (Companion Volume). ACM, 182–191.

[116] Song Wang, Jaechang Nam, and Lin Tan. 2017. QTEP: quality-aware test case
prioritization. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017.
523–534.

[117] Ying Wang, Zhiliang Zhu, Bo Yang, Fangda Guo, and Hai Yu. 2018. Using
reliability risk analysis to prioritize test cases. Journal of Systems and Software
139 (2018), 14–31.

[118] W. Eric Wong, Joseph Robert Horgan, Aditya P. Mathur, and Alberto Pasquini.
1997. Test Set Size Minimization and Fault Detection Effectiveness: A Case
Study in a Space Application. In COMPSAC. IEEE Computer Society, 522–528.

[119] Kun Wu, Chunrong Fang, Zhenyu Chen, and Zhihong Zhao. 2012. Test case
prioritization incorporating ordered sequence of program elements. In AST.
IEEE Computer Society, 124–130.

[120] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. 2009. Clustering
test cases to achieve effective and scalable prioritisation incorporating expert
knowledge. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009. 201–212.

[121] Hoijin Yoon and Byoungju Choi. 2011. A Test Case Prioritization Based on
Degree of Risk Exposure and its Empirical Study. International Journal of
Software Engineering and Knowledge Engineering 21, 2 (2011), 191–209.

[122] Dongjiang You, Zhenyu Chen, Baowen Xu, Bin Luo, and Chen Zhang. 2011.
An empirical study on the effectiveness of time-aware test case prioritization
techniques. In Proceedings of the 2011 ACM Symposium on Applied Computing
(SAC), TaiChung, Taiwan, March 21 - 24, 2011. 1451–1456.

[123] Fang Yuan, Yi Bian, Zheng Li, and Ruilian Zhao. 2015. Epistatic Genetic Algo-
rithm for Test Case Prioritization. In SSBSE (Lecture Notes in Computer Science),
Vol. 9275. Springer, 109–124.

[124] Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour. 2014. Using test
case reduction and prioritization to improve symbolic execution. In International
Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July
21 - 26, 2014. 160–170.

[125] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.
Bridging the gap between the total and additional test-case prioritization strate-
gies. In 35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013. 192–201.

[126] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and HongMei. 2009. Time-aware
test-case prioritization using integer linear programming. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis, ISSTA
2009, Chicago, IL, USA, July 19-23, 2009. 213–224.

[127] Lingming Zhang, Ji Zhou, Dan Hao, Lu Zhang, and Hong Mei. 2009. Prioritizing
JUnit test cases in absence of coverage information. In ICSM. IEEE Computer
Society, 19–28.

[128] Xiaofang Zhang, Tsong Yueh Chen, and Huai Liu. 2014. An Application of
Adaptive Random Sequence in Test Case Prioritization. In SEKE. Knowledge
Systems Institute Graduate School, 126–131.

[129] Xiaofang Zhang, Xiaoyuan Xie, and Tsong Yueh Chen. 2016. Test Case Pri-
oritization Using Adaptive Random Sequence with Category-Partition-Based
Distance. In QRS. IEEE, 374–385.

https://doi.org/10.1109/ICSM.1998.738488

	Abstract
	1 Motivation
	2 State of the Art Datasets for Test Prioritization
	2.1 Methodology
	2.2 Classification of Datasets
	2.3 Discussion
	2.4 Summary of State of the Art of Datasets for Test Prioritization

	3 Dataset
	3.1 Projects
	3.2 Structure
	3.3 Project Characteristics
	3.4 Data Procurement

	4 Demonstration and Baseline
	5 Conclusion and Outlook
	Acknowledgments
	References

