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ABSTRACT
The software engineering practice of automated testing helps pro-
grammers find defects earlier during development. With growing
software projects and longer-running test suites, frequency and
immediacy of feedback decline, thereby making defects harder to
repair. Regression test prioritization (RTP) is concerned with run-
ning relevant tests earlier to lower the costs of defect localization
and to improve feedback.

Finding representative data to evaluate RTP techniques is non-
trivial, as most software is published without failing tests. In this
work, we systematically survey a wide range of RTP literature
regarding whether their dataset uses real or synthetic defects or
tests, whether they are publicly available, and whether datasets
are reused. We observed that some datasets are reused, however,
many projects study only few projects and these rarely resemble
real-world development activity.

In light of these threats to ecological validity, we describe the con-
struction and characteristics of a new dataset, named RTPTorrent,
based on 20 open-source Java programs.

Our dataset allows researchers to evaluate prioritization heuris-
tics based on version control meta-data, source code, and test results
from fine-grained, automated builds over 9 years of development
history. We provide reproducible baselines for initial comparisons
and make all data publicly available.

We see this as a step towards better reproducibility, ecological
validity, and long-term availability of studied software in the field
of test prioritization.
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1 MOTIVATION
Automated test suites for programs tend to grow continuously as
software evolves, accumulating not only new requirements, but also
an ever-growing amount of previously reproduced defects to pre-
vent their re-introduction. As automated testing becomes costlier,
developers shy away from running time-consuming test suites in
their development environments and Continuous Integration (CI)
infrastructure suffers longer build cycles. The benefits of obtaining
rapid feedback whether a change introduced a regression wane and
defects get harder to detect and repair [43].

The field of Regression Test Prioritization (RTP) addresses the
challenges of delayed feedback and computational costs caused by
long-running test cycles [69, 92]. RTP generally uses heuristics to
predict the fault-detection capability of individual tests or whole
test schedules.

Manifold RTP techniques have been proposed in recent years [69].
Devising general RTP techniques which are effective in a variety of
settings is challenging, as there are several trade-offs involved, for
example between the effort required for gathering data to inform
the prioritization, and the actual gains of the prioritization. The
requirement of being applicable in a wide range of settings, and the
fact that RTP generally uses heuristics, renders the evaluation of
RTP techniques difficult [38, 72].

State of the Art in Regression Test Prioritization. Most evalua-
tion studies on the effects of a particular RTP techniques require a
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dataset that includes the source code of a program, a pool of test
cases, and a set of faults. In concordance with the goal of the eval-
uation, these datasets should either have well-known properties
to allow for controlled experimentation, or resemble real-world
projects to assess the utility of techniques under real-world condi-
tions. Further, datasets should be archived and openly available to
make the results of different studies comparable [15].

In order to assess the current state of the art in RTP evaluation
studies, we conducted a literature survey, which we describe in
section 2. Our survey showed considerable reuse of datasets in
the community. At the same time, it showed that most datasets
contain a limited number of projects and many of these projects
can not be considered to resemble real-world projects. While this
might be desirable for controlled experiments in order to assess
the theoretical performance of RTP techniques, it does at the same
time impede the ecological validity of the results.

An Open Dataset. To complement existing datasets designed for
controlled environments or synthetic test runs, we introduce the
RTPTorrent dataset consisting of 20 open-source Java projects
from GitHub with more than 100 000 real-world build jobs from the
TravisCI continuous integration infrastructure1. Compared to all
Java projects currently hosted on GitHub, these projects span a wide
range with regard to size, number of contributors, and maturity.
In section 3, we describe project selection, properties, qualitative
characteristics, and our acquisition process.

Non-trivial Baseline. We run a micro-study implementing an
effective prioritization heuristic based on test failure history to
demonstrate the use of our dataset.We present its results in section 4
and include them in the dataset to provide a non-trivial baseline
that complements commonly used random and default test-runner-
determined baselines.

Contributions. In summary, our contributions comprise:
• A systematic review of datasets used throughout RTP litera-
ture from the perspective of re-using their study subjects and
reproducing their results as baselines for future research.

• A novel Java-based open-source dataset addressing the con-
cerns emerging from the literature study.

• A quantitative description of selected projects, including
their representativeness with respect to all Java projects on
GitHub.

• A prioritization micro-study that can serve as non-trivial
baseline.

2 STATE OF THE ART DATASETS FOR TEST
PRIORITIZATION

Datasets are important for the evaluation of RTP techniques, as
the properties of the dataset might influence the impact on the
performance of a RTP technique in practice. At the same time, the
advancement of the field depends on comparable evaluations, which
in turn requires that studies are conducted using common datasets.
In order to assess the state of the art in datasets for RTP evaluation,
we characterized the internal qualities of the used datasets, as well
as the degree to which datasets are shared and archived. Therefore,

1The dataset is available at doi.org/10.5281/zenodo.3712290.

we conducted a literature survey with regard to the following three
research questions:

(1) What kind of projects, test cases, and faults are used to
evaluate RTP techniques?

(2) Which datasets are shared amongst evaluation studies of
RTP techniques?

(3) To which degree are the datasets available?

2.1 Methodology
In general, we followed the SALSA (Search, AppraisaL, Synthesis,
Analysis) process for conducting the literature survey [34]. In the
following, we describe the individual steps of the process and the
respective intermediate sizes of the set of candidate publications.

Search. As the goal of the survey was to investigate datasets
used for current research on RTP, we strove for a complete survey.
As an initial sample we used the literature cited in a recent survey
on RTP [69].

In order to get a complete picture of the current situation, we also
retrieved all publications of selected publication venues since 2009,
assuming that any regularly used datasets will also be used in recent
publications. We selected the publication venues to retrieve the ad-
ditional publications by choosing prominent software engineering
publication venues and adding venues which published prominent
papers in the field of RTP. Overall, we added publications from:
Conference on Mining Software Repositories (MSR), Conference
on the Foundations of Software Engineering (FSE), International
Conference on Software Engineering (ICSE), International Sym-
posium on Software Testing and Analysis (ISSTA), Symposium
On Applied Computing (SAC), Tests and Proofs Conference (TAP),
Journal of Systems and Software (JSS), International Conference
on Software Security and Reliability / Secure Software Integration
and Reliability Improvement (SSIRI/SERE).

We retrieved the bibliographic information of the publications of
these venues through dblp2. We first fetched the full list of each pub-
lication venue via the corresponding overview page (for example
dblp.uni-trier.de/db/conf/msr/msr2019.html), while accounting for
special editions of the venue. We then parsed each page, extracted
the URLs of the corresponding Bibtex resources, and downloaded
the bibliographic information.

Combined with the literature from the survey [69], we retrieved
a set of 10 308 publications.

Appraisal. We were interested in publications specifically work-
ing on RTP. Thus, in an initial step, we reduced the number of
publications by only selecting papers which included “test”, “priori-
tiz”, or “prioritis” in title or keywords. This reduced the candidate
set to 1 484 publications (of which 1290 stem from our search, 205
from the 2019 survey, and 11 appeared in both sets).

In a second step, we reviewed each remaining candidate publica-
tion on whether it refers to general regression test prioritization. In
particular, we rejected works on test suite reduction, test selection,
or test case generation. Publications which described any of these
approaches in combination with RTP were accepted. Further, as we
were interested in datasets which are used for assessing general-
purpose RTP approaches, we also excluded approaches targeting
2https://dblp.uni-trier.de

doi.org/10.5281/zenodo.3712290
dblp.uni-trier.de/db/conf/msr/msr2019.html
https://dblp.uni-trier.de


RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

specific application domains, such as web service composition or
mobile applications, or special types of tests, such as manual tests
or feature interaction tests.

Finally, we removed all papers which did not describe a study
using a dataset of projects including source code. The resulting set
of publications considered in the survey includes 117 publications.

Synthesis. To characterize the publications, we used thematic
analysis [8]. When characterizing datasets, we surveyed each study
reported in a publication separately. For research questions 1 and
3, we coded the publications using a pre-defined coding scheme
(applying a theoretical thematic analysis [8]). We describe the indi-
vidual dimensions and codes in section 2.2. In detail, the nature of
programs, variants/versions, and faults are a recurring theme that
tends to provoke discussions about validity and generality of RTP
studies [19]. Moreover, the broad availability of fine-grained pro-
gram versions (GHTorrent) and real build logs (TravisTorrent) calls
the argument that manual or synthetic/generated data be easier to
obtain into question, which prompted us to focus on these proper-
ties. We extended this to the nature of the tests used in studies, as
these are also relevant for history-based approaches. The number of
projects per dataset is a general aspect relevant to empirical studies.
Finally, the degree of availability of datasets originates from our
own difficulties of replicating previous work.

Our initial choice of codes was subject to little subjectivity, as
authors state what data they use for evaluation (for example, “...vari-
ants of the program where faults have been seeded manually” [66]).
The data was coded by one coder. Whenever a code could not
be assigned unambiguously, we discussed the ambiguity with co-
authors with the goal to refine the coding scheme, then re-coded
the previous papers using the updated rules.

For research question 2, we first collected all existing datasets
mentioned in publications. Then we derived individual names for
the datasets, and finally coded the publications by assigning these
names (thereby applying inductive thematic analysis [8]). In case a
study used projects from several datasets, we coded the individual
numbers of projects from each dataset.

Analysis. As we did not approach the literature survey with
a specific hypothesis, we did not employ a fixed-setup analysis.
Instead, we observed general patterns in the data (for the discussion
of the results see section 2.3).

2.2 Classification of Datasets
Throughout the dimensions, we assume that a dataset consists of a
number of software projects. These might come in different variants
such as releases, commits, or generated mutants. Further, for each
project there can be a number of tests.

In the following, we describe the single dimensions, the codes
(For each dimension and code, we also provide the column name
and symbol used in table 1.)

Research Question 1. To answer the first research question, we
used the following dimensions with the described codes to charac-
terize datasets:

Overall number of projects (#Proj) Large sample sizes al-
low for a larger variation in project properties and thus
influence the conclusions which can be drawn from studies.

Thus, we report the number of projects included in each
dataset. This number does not include different releases or
versions of a single project; these are counted as variants
(see below).

Nature of projects (Syn?) Wedeterminedwhether the projects
used in the dataset have only been created for research pur-
poses or whether they have been in actual use. While syn-
thetic projects allow researchers to design projects with
controlled properties, they are also a threat to the ecological
validity of an evaluation. In contrast, projects which have
been in actual use are more difficult to obtain and might vary
widely in their properties.
synthetic (◦) Synthetic projects have been created for other

purposes than actual usage, this also includes projects
resulting from university courses.

real (empty cell) Real projects are projects which have been
created for actual usage. They do not have to be in use any-
more. Further, this does not entail that the project evolved
over a longer period.

Origin of tests As the evaluation of RTP approaches always
relies on pools of test cases, we determine how the tests
being used have been created. While manually created tests
may be equivalent to historic tests in some scenarios, studies
on historic test cases have a higher ecological validity.
historic () The project includes tests created as part of the

evolution of the project
manual (Ò) The tests were created manually, but not during

the evolution of the project.
generated (3) An automatic test generation tool was used

to generate the tests.
Origin of variants Some RTP approaches require several vari-

ants of a program to gather data used in the prioritization.
For example, many prioritization techniques require sev-
eral faulty versions, and history-based techniques require a
change history.
historic () The variants used in the study are the result of

the actual evolution of the project. This includes variants
on several levels such as releases, snapshots, as well as
commits.

manual mutants (Ò) Different variants of the project source
code were created manually, but not as part of the devel-
opment of the project.

generated mutants (3) Some mutant generation tool was
used to automatically generate mutants.

Origin of faults Previous work has shown, that for some pri-
oritization techniques mutation faults can be used as a re-
placement for real, historic faults [19]. At the same time,
manually seeded or generated faults pose a threat to the
external validity of a study, as the historic set of fault of
real-world projects might have extreme properties.
historic () The faults are a result of the evolution of the

project. This also includes studies in which the test suite
of a newer version of a project is run on an older version.

manual (Ò) The faults were manually seeded.
generated (3) The faults were generated.
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Table 1: of all publications used in the literature survey described in section 2. A detailed description of the columns and
symbols (resp. the dimensions and codes) can be found in section 2.2.

Key Year #Proj Syn? Tests Variants Faults Dataset C V T R Archived

[64] 2014 4 ,Ò Ò,3 3 SIR𝑗𝑎𝑣𝑎 (1)
[74] 2008 2  Ò, Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓ ✓

[39] 2013 12 3,,Ò Ò, ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝑗𝑎𝑣𝑎 (4), SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓

[45] 2010 1 Ò  Ò SIR𝐺𝑁𝑈 (1) ✓ ✓ ✓

[48] 2006 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠

[73] 2013 1 ◦ Ò Ò Ò

[59] 2010 8 3,Ò Ò ,Ò SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[2] 2013 1  Ò Ò ✓ ✓

[25] 2001 1 3,Ò Ò  space ✓ ✓ ✓

[41] 2016 5 Ò  3 SIR𝐺𝑁𝑈 (5) ✓ ✓

[58] 2002 8 3,Ò Ò ,Ò siemens, space
[68] 2018 2    GSDTSR ~ ~ ~ ✓ ~
[71] 2016 8   3 ✓ ✓

[83] 2018 10 ,Ò Ò, ,Ò SIR𝐺𝑁𝑈 (5), defects4j (5) ✓ ✓ ✓ ~
[94] 2015 8    SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓

[107] 2008 1 3 ∅ ? ✓ ∅
[115] 2016 1 ,Ò ∅ ? ∅
[119] 2012 3 ,Ò Ò, Ò,? SIR𝑗𝑎𝑣𝑎 (1) ✓

[125] 2013 4  Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[6] 2012 1    WebKit ✓ ✓ ✓ ✓

[10] 2011 1  

[17] 2005 4  Ò,,3 Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[44] 2008 1 ◦ 3 Ò Ò

[61] 2008 6 ~ 3,Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (1)
[62] 2005 3 ◦ 3 Ò Ò

[79] 2013 1  

[92] 1999 7 Ò Ò Ò siemens
[111] 2006 1 3 Ò  SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓ ✓ ✓

[127] 2009 2  Ò, Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓ ✓

[3] 2013 2 ? ,3 3

[27] 2011 1   ?
[60] 2009 7 ~ 3,Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (1)
[77] 2012 1  3 Ò

[84] 2013 1 ,Ò 

[91] 2013 3 Ò Ò,,3 3,Ò SIR𝐺𝑁𝑈 (3) ✓ ✓

[95] 2008 3 Ò Ò Ò ✓

[98] 2010 1 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (1) ✓ ✓ ✓ ✓

[12] 2016 5 3 ∅ 3 ✓ ∅
[56] 2012 10  ,3 3, ✓ ✓

[70] 2015 3    ✓ ✓

[85] 2015 5    defects4j ✓ ✓ ✓ ✓

[97] 2007 1  

[106] 2012 3 ◦ 3 3 3 ✓

[108] 2016 1  

[20] 2008 5  Ò,3 3,Ò SIR𝑗𝑎𝑣𝑎 (5) ✓ ✓ ✓ ✓

[28] 2015 6 ,Ò Ò, ,Ò SIR𝐺𝑁𝑈 (5) ✓ ✓ ✓

[81] 2009 2  Ò, ,Ò SIR𝑗𝑎𝑣𝑎 (1)
[101] 2017 3    ✓ ✓

[104] 2002 3   ∅
[113] 2006 2 ~ ,Ò 3 3 ~ ~
[120] 2009 7 3,Ò Ò, ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (2), SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝐺𝑁𝑈 (2) ✓ ✓ ✓ ✓

[124] 2014 6 3,Ò Ò ,Ò SIR𝐺𝑁𝑈 (3), SIR𝑆𝑝𝑎𝑐𝑒 , SIR (1) ✓

[126] 2009 2  Ò, 3,Ò SIR𝑗𝑎𝑣𝑎 (1) ✓ ✓

[53] 2009 11 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝐺𝑁𝑈 (4) ✓ ✓

[65] 2009 7 Ò Ò Ò siemens
[99] 2007 6 ? ? ? ?
[24] 2001 8 3,Ò Ò ,Ò siemens, space
[52] 2015 4 Ò Ò, Ò SIR𝐺𝑁𝑈 (4) ✓ ✓ ✓ ✓

[78] 2015 3  

[129] 2016 11 Ò Ò,3 3,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓

[50] 2010 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[4] 2018 3   ,Ò ✓ ✓ ✓
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Key Year #Proj Syn? Tests Variants Faults Dataset C V T R Archived

[57] 2017 2    ✓ ~ ~
[100] 2009 8 ?  ? ?
[122] 2011 8 3,Ò Ò,,3 3,,Ò SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓

[14] 2012 2  

[114] 2015 4 Ò Ò, Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (2), SIR𝐺𝑁𝑈 (2) ✓ ✓ ✓ ✓

[128] 2014 1 3, ∅  ✓ ∅ ✓

[9] 2016 1  

[11]a 2018 50   3 ✓ ✓ ✓

[11]a 2018 11  

[18] 2006 5  Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[72] 2016 30  3 3 ✓ ✓

[116] 2017 7  ,3 3, ✓ ✓

[7] 2015 1    ✓ ✓ ✓

[67]a 2013 8 3,,Ò ? ? SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (6), SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝐺𝑁𝑈 (1) ✓ ? ✓

[67]b 2013 1  ? ? ~ ~ ~
[86] 2015 6 Ò Ò, Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (2), SIR𝐺𝑁𝑈 (4) ✓ ✓ ✓

[123] 2015 4 ,Ò ? ? ✓ ? ✓

[90] 2008 1  Ò Ò SIR𝑗𝑎𝑣𝑎 (1) ✓ ✓ ✓ ✓

[30] 2009 8 3,Ò Ò ,Ò SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[75] 2010 5 3,Ò Ò ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (4), SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓ ✓

[87] 2016 15 ~ ,Ò Ò,,3 3,Ò SIR (9), SIR𝑗𝑎𝑣𝑎 (1) ✓ ✓

[66] 2012 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[21] 2006 4   Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[110] 2014 2  Ò, Ò SIR𝑗𝑎𝑣𝑎 (1), SIR (1) ✓ ✓ ✓ ✓

[40] 2016 1 ◦ Ò ∅ ∅ ✓ ∅
[63]a 2009 5 ◦ Ò 

[63]b 2009 2 Ò Ò Ò

[63]c 2009 2  ∅

[80] 2011 1 ◦ Ò Ò Ò

[121] 2011 1 Ò Ò Ò siemens (1)
[42] 2016 2   3

[13] 2018 7 ~ 3 Ò Ò

[35] 2018 6    travistorrent ✓ ✓ ✓ ✓

[46] 2012 2 Ò Ò, Ò SIR𝐺𝑁𝑈 (2) ✓ ✓ ✓ ✓

[49] 2008 7 Ò Ò Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 ✓ ✓ ✓ ✓

[51] 2015 4 Ò Ò, Ò SIR𝐺𝑁𝑈 (4) ✓ ✓ ✓ ✓

[89] 2016 1    ✓ ✓ ✓

[96] 2016 5  Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (3), SIR (2) ✓ ✓

[102]a 2012 4 ◦ Ò Ò Ò

[102]b 2012 3  ∅  ∅
[117] 2018 4 ,Ò Ò, ,Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓ ✓ ✓

[31] 2013 2 3,  Ò ~
[76] 2013 1 ◦ Ò Ò ∅ triangle ✓

[88] 2010 4 ◦ Ò Ò Ò

[105] 2008 1 ◦ Ò ∅ ? ✓ ∅ ✓ ✓

[32] 2011 11 3,Ò Ò, ,Ò SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝑆𝑝𝑎𝑐𝑒 , SIR𝐺𝑁𝑈 (3) ✓ ✓ ✓ ✓

[29] 2014 5  3 3 SIR (4) ✓ ✓

[1]a 2016 3  Ò Ò ✓ ✓

[1]b 2016 26 ◦ 3 Ò Ò

[103] 2014 4 ◦ Ò Ò Ò

[109] 2012 5 ◦ Ò Ò Ò ✓

[38] 2014 33 3, ,3 3 SIR𝑗𝑎𝑣𝑎 (4) ✓ ~
[16] 2010 5  Ò, Ò SIR𝑗𝑎𝑣𝑎 (5) ✓ ✓ ✓ ✓

[19]a 2006 4  Ò,3 3,Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[19]b 2006 2  Ò,3 3,Ò SIR𝑗𝑎𝑣𝑎 (2) ✓ ✓

[22] 2016 6  Ò,,3 3,Ò SIR𝑗𝑎𝑣𝑎 (6) ✓ ✓

[26]a 2002 8 3,Ò Ò,,3 ,Ò siemens, space
[26]b 2002 3 ,Ò Ò, ,Ò ~ ~ ~ ~
[36] 2013 6 ,Ò Ò, ,Ò ~ ~
[37]a 2016 10 3,,Ò Ò,,3 3,,Ò SIR𝑗𝑎𝑣𝑎 (2), SIR𝑆𝑖𝑒𝑚𝑒𝑛𝑠 , SIR𝑆𝑝𝑎𝑐𝑒 ✓ ✓

[37]b 2016 5 ? ,3 3

[54] 2003 1 3,Ò Ò  space
[82] 2012 4  Ò,,3 Ò SIR𝑗𝑎𝑣𝑎 (4) ✓ ✓

[93] 2001 8 3,Ò Ò,,3 3,,Ò siemens, space ✓ ~ ✓ ~
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Research Question 3. In order to approach the third research
question, we characterized to which degree the datasets used in
the studies are available. We distinguished between the general
availability of parts of the data set (code, variants, tests, test runs)
and whether the dataset was archived (archived):

Code (C) Is the source code of the project generally available?
This is particularly challenging for studies using industrial
projects or synthetic projects. Open-source projects used in
studies are often available by their very nature.

Variants (V) Is a set of variants of the project available that
includes the variants used in the project?

Tests (T) Are the tests available?
Test runs (R) Are the test runs and the corresponding results

available? This is relevant for some history-based techniques.
Archived We consider the data archived if the full data as it

was used can be retrieved from a website. If a study reuses an
existing dataset, and this original dataset was archived (for
example a SIR project), we count the dataset as archived only
if the material was used without further modification such
as the generation of mutants. In the special case of a study
using randomly generated test suites from an archived pool
of test cases, we still considered the data as being archived.

General Codes. We further used three generic codes throughout
all dimensions:

unspecified (?) The information is, to our knowledge, not ex-
plicitly disclosed in the publication.

none (∅) There is none of what the dimension describes. For
example, the study did not involve any variants of programs.

partially (~) The study falls in-between two binary codes.

2.3 Discussion
Based on the collected data (see table 1), we discuss general insights
with respect to our three research questions.

Research Question 1. While some studies use datasets containing
as many as 50 projects, the mean number of projects used per study
is 5.25 (𝑆𝐷 = 6.36). This might pose a threat to the external validity
of some of the studies, as the variation in project properties might
be smaller than what is to be expected from real-world settings.

Overall, the results show that only few studies incorporate syn-
thetic programs (15.1%). While most studies did primarily use real
projects, 21.4% of all studies used the Siemens programs [47]. While
these are not synthetic, the Siemens programs are limited, as they
are shorter than 1 000 LOC [15] 3.

With regard to the origin of the test cases, historic (54.8%) and
manual test case pools (47.6%) are most often used in studies. Pools
of generated test cases are only seldom used (23.0%). Notably, 26.2%
of all studies mixed projects with test cases of different origin,
although this might introduce a source of bias due to the different
properties of these test case pools.

The variants used in the studies are also mostly historic (51.6%)
and manual (56.3%). However, many of the historic variants are

3We classified the Siemens programs conservatively as real programs as the original
paper only describes them as being “obtained from various sources” [47].

at the granularity of releases. For example, all projects with his-
toric variants retrieved from SIR contain only releases as historic
variants.

Finally, most projects contain manually seeded faults (57.9%), fol-
lowed by historic faults (38.1%), and generated faults (22.2%). While
this indicates that historic faults are often explicitly considered in
studies, the percentage might also be a result of the fact that many
projects were retrieved through SIR (see below), which provides
some datasets which incorporate historic faults.

Research Question 2. We identified several datasets reused by
studies on RTP. Many of these (42.9%) were retrieved through
the Software-artifact Infrastructure Repository (SIR) [15]. Since
2015, studies also incorporated datasets from defects4j [55], trav-
istorrent [5], and the Google Shared Dataset of Test Suite Results
(GSDTSR) [23]. The most notable datasets are the the Siemens pro-
grams [47], the space program [112, 118], the SIR Java dataset [15],
and the SIR GNU dataset [15]. The siemens and the space datasets
were also used before they were made available through SIR.

Research Question 3. For many studies, in particular the ones
using open-source projects, the basic data for the study can be
considered available. At the same time, we can observe that datasets
have seldom been properly archived. Only 19.0% of the datasets in
the corpus are available through some form of archive (even given
our wide definition of archiving). Further, most of these archived
datasets (83.3%) are only considered archived because the described
study used an unaltered dataset from SIR.

2.4 Summary of State of the Art of Datasets for
Test Prioritization

SIR datasets are commonly used to evaluate RTP techniques and
only few other datasets are used or made available. Even with the
SIR datasets as a solid foundation for comparable experiments, the
number of projects per dataset remains limited. Further, most of the
test case pools, variants, and faults are manually created instead
of relying on historic, real-world data. Finally, the Siemens dataset
is commonly used, but the programs themselves are quite limited
and do not resemble present-day software projects [15].

3 DATASET
To improve the ecological validity of future RTP evaluations, we
propose to focus on real-world testing data from readily available
software projects. As a first step, we construct a new dataset of
open-source software projects and their fine-grained build data.

3.1 Projects
The RTPTorrent dataset contains 20 Java projects (listed in Ta-
ble 2). All of them are available on GitHub and have been using the
TravisCI build service. That means, both program evolution and
test runs are available and analyzable using the repository itself,
the GHTorrent dataset, and the TravisTorrent dataset [5, 33]. All test
results are within the time range covered by TravisTorrent (2007 –
2016).

Our selection requirements were that the projects (1.) be written
in Java due to frequent use in literature and large ecosystem of
analysis and instrumentation tools, (2.) have the highest-ranking
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Figure 1: Relational structure of the dataset with links to
TravisTorrent and the corresponding Git repository.

number of logged failures, and (3.) vary sufficiently in size and
maturity to represent a broad spectrum of GitHub’s community.

3.2 Structure
The dataset contains test results in relational form (see Figure 1)
and the full source code history as Git Version Control System (Git)
repositories.

Test results are available per build job. Builds run frequently
during program evolution, but can span more than a single Git
commit and spawn more than a single job (e.g. one per platform).

For each build job and each test case run during that build, we
provide the number of total, failed, errored, and skipped test meth-
ods4. To facilitate use in prioritization, we also provide the index,
which is the position in which the test case was originally run, and
the duration as logged by JUnit. Note that durations below Java’s
clock resolution are reported as 0.0 s (9.28 % of all test cases) and
17 negative durations occurred due to defects in the test runner.

Dataset Compatibility. We aim to make our dataset compatible
to the existing datasets GHTorrent and TravisTorrent without re-
dundantly mirroring their data. That means:

• Our job and build IDs in the dataset refer to the TravisTorrent
table (travistorrent_8_2_2017.csv), so that additional
build information (e.g. branch, timestamps) can be obtained
by joining.

• Our reported SHA1 hashes from Git commits are included in
the commits table of GHTorrent. Authors, GitHub projects,
associated pull requests and issues can be linked through
this connection.

Due to the fact that we constructed the dataset based on build
logs from 2007 to 2016, there are two limitations when linking to
external resources:

• Not all projects are available on GitHub at their original lo-
cations. Due to re-engineering efforts, some repositories are
merged into new projects that replace the original location.
Since multiple forks of each project exist, we were able to
archive the original repository from such a forked location
and verify that our build commits are included.

4Method-level results are usually not logged on TravisCI
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Figure 2: Distribution of the number of authors and commits
over all Java projects on GitHub; black lines represent the
projects of our dataset.

• Not all commits are available in the Git repositories, since
proposed changes by contributors (pull requests, issue com-
mits) can be built and tested but rejected by code reviewers.
This affects 41 commits. The other 62 133 are part of the
repositories.

3.3 Project Characteristics
Size. We quantified the size of our projects by structural and pro-

cess metrics in Table 2. The number of lines and classes is computed
for all Java code files in the latest build. The number of Git commits
is the union over all commits built in the dataset, the sparkline il-
lustrates their distribution over 9 years. We further state how many
build jobs our dataset contains per project and the average number
of test cases, test methods, and failing test methods per job.

Project Maturity and Representativeness. We compare our dataset
to all Java projects in the GHTorrent5 dataset to illustrate relative
maturity and project size in relation to GitHub. Our projects have
received on average 11 324 commits by 128 authors, while all Java
projects on GitHub received on average 141 commits by 5 authors.
How the number of commits and authors are distributed with re-
spect to the background population can be seen in Figure 2. As
such, our dataset is biased towards larger and contribution-heavy
projects, which is acceptable, since test prioritization is of little
benefit in smaller or less mature projects.

Reliability. Our dataset contains observations from build logs.
Changes in the logging process or build configuration can alter
how tests are parsed, grouped, or ordered, which makes test runs
before and after such a change not directly comparable. In addition,
there might be multiple types of builds configured, such as different
platforms or different branches. They interleave since there is no

5Retrieved 2019-06-31
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Table 2: Project selection with size (computed over the most recently built version), commit activity (2007 – 2016), build jobs,
the average number of test cases (TC) and methods (TM) run and failing per build, and the average number of seconds (TC
Time) each test case was running

Project Lines Classes Activity Commits Builds TC TM TM Failing TC Time

Achilles 54 223 435 763 997 177.9 1373.41 5.46 0.6
DSpace 384 448 2025 3779 3338 62.94 708.18 2.37 2.1
HikariCP 13 868 69 1703 1662 28.28 117.59 0.57 2.0
LittleProxy 13 823 87 611 581 27.19 116.51 1.87 4.5
buck 562 536 3593 7147 1148 682.92 4052.42 3.48 2.1
cloudify 132 574 1024 11 078 5206 56.69 195.65 0.29 1.5
deeplearning4j 138 155 975 2607 1038 14.94 30.82 1.16 36.4
dynjs 57 184 724 531 1020 73.28 844.35 5.23 0.4
graylog2-server 127 161 1259 6136 10 622 129.33 943.18 0.1 5.7
jOOQ 351 209 1411 2006 3245 25.69 381.85 0.34 0.9
jade4j 10 288 148 374 932 38.51 258.86 7.55 0.1
jcabi-github 64 551 454 753 3241 171.29 605.47 0.55 4.0
jetty.project 346 354 1744 205 383 167.4 1468.23 3.26 5.0
jsprit 59 581 427 308 1089 86.55 997.14 1.13 0.3
okhttp 69 090 266 2308 9772 42.46 1195.77 1.62 3.8
optiq 243 064 1029 846 1808 44.16 1417.58 0.7 47.3
sling 673 484 4966 13 763 8552 181.9 1010.76 7.38 4.7
sonarqube 661 490 5486 5244 53 307 321.44 1948.13 0.68 3.0
titan 59 626 534 679 1075 46.51 478.03 5.97 68.5
wicket-bootstrap 42 352 524 1292 1110 46.1 159.93 32.74 0.3

way to distinguish them at build log or test level without resorting
to heuristics or parsing of build configurations.

Another major source of variability is the time over which builds
were collected. For most projects multiple years are included in
which they grew significantly. The nonlinearity of this evolution
can be seen at the example of the graylog2-server in Figure 3: From
2014 on, the number of test methods steeply rises. A bifurcation
in 2014 hints that a different build configuration runs significantly
more tests than the other configuration. The temporary drop in
test case classes in 2014, which did not affect the number of test
methods, indicates major re-engineering activity.

Timing data collected by TravisCI can be used to estimate the
effort of a single test, but the same test can be run on increasingly
powerful hardware over time and compete with an arbitrary num-
ber of concurrent build jobs. These sources of variability need to
be taken into account.

3.4 Data Procurement
Obtaining test-level data from build logs is challenging, as few tools
continue running in the presence of failures and output sufficient
information about succeeding tests. In TravisTorrent’s raw build
logs, we identified Maven Surefire and Facebook Buck as producing
the most usable output that always logs results from all test cases,
including the number of total, failing, erroring, and skipped test
methods with timing information.

An example of a Maven build log is given in Listing 1. We used
regular expressions to match which test is running and the fail-
ure and timing statistics. As a safety guard, we detect component
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Figure 3: Number of test cases (blue/left) and test methods
(red/right) per build in the graylog2-server project over time.

boundaries (lines of minuses) and, within each component, pair cor-
responding test announcements with their results on a best-effort
basis, as parallelization can announce multiple tests and then report
all their results in the order they launched.

4 DEMONSTRATION AND BASELINE
Our dataset exhibits properties that are absent from synthetic
datasets or projects observed only in large change increments. The
fine-grained historical structure of our dataset reflects how tests
respond to smaller changes and how real-world infrastructure is
being used, including (but not limited to) the following factors:

• manually triggered builds
• building external contributions (pull requests) before accept-
ing them



RTPTorrent: An Open-source Dataset for Evaluating Regression Test Prioritization MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Listing 1: Excerpt from build log 56082549 of sonarqube, matched patterns highlighted.
...
[INFO] ------------------------------------------------------------------------
[INFO] Building SonarQube :: Server 5.2- SNAPSHOT
[INFO] ------------------------------------------------------------------------
...
Running org.sonar.server.es.request.ProxyDeleteRequestBuilderTest
Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.285 sec

- in org.sonar.server.es.request.ProxyDeleteRequestBuilderTest
Running org.sonar.server.search.QueryContextTest
Tests run: 12, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.016 sec

- in org.sonar.server.search.QueryContextTest
Running org.sonar.server.activity.index.ActivityResultSetIteratorTest
Tests run: 3, Failures: 2, Errors: 0, Skipped: 0, Time elapsed: 0.197 sec <<< FAILURE!

- in org.sonar.server.activity.index.ActivityResultSetIteratorTest
traverse_after_date(org.sonar.server.activity.index.ActivityResultSetIteratorTest) Time elapsed: 0.006 sec
<<< FAILURE!
org.junit.ComparisonFailure: expected : <14200[668]00000L> but was : <14200[704]00000L>
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java :62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java :45)
...

• streaks of repeatedly failing tests
• influence from configuration changes

We expect these phenomena to introduce noise and confounding
factors, but they have the potential to act as predictors as well.
To show the surprising effectiveness of using real-world patterns,
we studied the heuristic of prioritizing tests by how recently they
failed, also known as demonstrated fault effectiveness [58].

The purpose of this micro-study is to demonstrate the dataset in
action and provide a baseline ranking. The baselinemakes use of our
fine-grained build history without being too complex and provides
a non-trivial reference point other than random or unmodified test
schedules.

Demonstrated Fault Effectiveness. This heuristic assigns a priority
𝑃𝑡 (𝑛) to test 𝑡 in build number𝑛 as 𝑃𝑡 (𝑛) = 𝛼𝐹𝑡 (𝑛)+ (1−𝛼)𝑃𝑡 (𝑛−1)
with 𝑃 (0) = 0, where 𝐹𝑡 (𝑛) = 1 if the test 𝑡 failed in build 𝑛,
0 otherwise. We only include past builds that were not running
concurrently and fixed 𝛼 = 0.8 to focus on recent failures.

Measurements. The de-facto standard for evaluating test sched-
ules is the Average Percentage of Faults Detected (APFD) metric. It
measures how early faults are discovered. Given a test sequence 𝑇
and a set of faults 𝐹 where a fault 𝑓 is detected after 𝑇𝐹 (𝑓 ) tests:

𝐴𝑃𝐹𝐷 (𝑆, 𝐹 ) = 1 −
∑

𝑓 ∈𝐹 𝑇𝐹 (𝑓 )
|𝑆 | × |𝐹 | + 1

2|𝑆 | (1)

Higher values correspond to earlier fault detection. If faults are
not synthesized, a test failure is often equated with a fault, since
telling apart distinct faults in real builds is hard to automate.

We quantified the APFD in our unprioritized dataset and addi-
tionaly provide a test schedule sorted by demonstrated fault effec-
tiveness to serve as baseline. Table 3 shows the average results and
their variability on a per-project basis and over all build jobs

Discussion. Although comparison with a wider range of exist-
ing prioritization strategies is out of scope, we observe that the
simple heuristic provides competitive ranking performance. We
attribute this property to the high resolution of our dataset, since

Table 3: APFD scores of the original builds and the demon-
strated fault effectiveness baseline, higher values are better.
Variability is given as histogram from 0 % to 100 %, density to
the right is better.

Build APFD Prioritized APFD

Project Mean [%] Dist. Mean [%] Dist.

Achilles 29.0 53.0
DSpace 34.7 80.9
HikariCP 58.5 69.0
LittleProxy 42.2 61.1
buck 50.0 96.5
cloudify 17.7 91.2
deeplearning4j 48.3 83.4
dynjs 45.7 58.2
graylog2-server 45.4 72.8
jOOQ 34.1 86.1
jade4j 47.8 63.2
jcabi-github 23.6 71.1
jetty.project 20.3 86.1
jsprit 46.7 62.0
okhttp 45.7 79.5
optiq 23.0 61.4
sling 2.5 94.7
sonarqube 36.4 74.4
titan 27.5 75.0
wicket-bootstrap 30.1 64.5

Dataset 25.9 81.1

we neither considered code nor change-related data as most pri-
oritization techniques do. We encourage researchers to compare
both history-aware and -oblivious heuristics when using such a
dataset, as observing human programming activities can sometimes
be a predictor that complements or outperforms formal relations
between test suites and code.
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5 CONCLUSION AND OUTLOOK
The evaluation of RTP techniques can be challenging with regard
to balancing internal and external validity. The datasets on which
RTP techniques are evaluated play an important role in the external
validity of these studies.

Our literature survey showed that these evaluation studies reuse
existing datasets. However, at the same time, many datasets include
programs with limited scope and limited resemblance to real-world
projects.

In response to that, we proposed a new dataset, based on 20
open-source Java projects constructed from data from GHTorrent
and TravisTorrent. This dataset only consists of real-world data
resulting from the evolution of the projects. To make this dataset
accessible, we characterized the projects included in the dataset,
illustrated how the dataset can be used, and which limitations and
confounding factors researchers must expect. Finally, we provided
a non-trivial baseline for future evaluations of RTP techniques by
evaluating the peformance of the demonstrated fault effectiveness
heuristic on our dataset.

As next steps, the current scope of 20 projects could be ex-
tended to be more representative, and a comparison with propri-
etary projects would be needed to asses the validity of open source
findings in such settings. For future research, we hope that using
such a dataset can uncover discrepancies between “clean-room”
evaluations and the improvement they bring to real-world testing
situations and inspire prioritization heuristics that better model the
human nature of errors in development processes.
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