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ABSTRACT
Programmers often benefit from the availability of concrete run-
time data alongside abstract source code. However, programmers
need to manually exercise the program to reach an interesting
state or write code that reproducibly executes a functionality with
concrete inputs to be able to observe concrete data.

This work aims to automate this process by leveraging generative
AI. We present a framework and a preliminary Smalltalk-based
prototype allowing programmers to obtain and run examples for
the currently viewed source code section from a large language
model.

Our approach demonstrates how locally hosted LLMs can be fine-
tuned and used for such a task with reasonable computational effort
while minimizing common problems like hallucinations and out-of-
date knowledge. The framework has direct applications in example-
based live programming, where it can suggest new examples, and
in learning settings where novices need to know how to use certain
functionality.

CCS CONCEPTS
• Software and its engineering→ Integrated and visual devel-
opment environments; Automatic programming; • Computing
methodologies→ Natural language processing.

KEYWORDS
live programming, example-based programming, generative ai,
large language models, smalltalk

ACM Reference Format:
Toni Mattis, Eva Krebs, Martin C. Rinard, and Robert Hirschfeld. 2024. Ex-
amples out of Thin Air: AI-Generated Dynamic Context to Assist Program
Comprehension by Example. In Companion Proceedings of the 8th Inter-
national Conference on the Art, Science, and Engineering of Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0634-9/24/03
https://doi.org/10.1145/3660829.3660845

(‹Programming› Companion ’24), March 11–15, 2024, Lund, Sweden. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3660829.3660845

1 INTRODUCTION
Source code is inherently abstract, yet our understanding of abstract
procedures benefits from concrete examples.Worked examples have
been used in education since the emergence of written history [10]
and continue to be effective today [13]. Several practices in soft-
ware engineering, such as testing and technical documentation, use
examples that illustrate the workings of software.

In modern programming environments, programmers have sev-
eral options to understand a program by example: they can use print
statements, debugging facilities to halt a running program, inspect
run-time data, and step through the program to observe how data
changes. Several advanced mechanisms have since been proposed
that bring concrete data even closer to the source code and illustrate
its effects over time, such as omniscient debugging [18], Example-
centric Programming [3], Exemplars [1], bimodal example-based
programming [7], and Babylonian Programming [15].

A question that concerns all of these practices is how pro-
grammers can come up with examples or steer the program
into a state that serves as example to demonstrate the logic
they are trying to understand.

Typically, programmers manually interact with the running pro-
gram until it is in the state of interest (and drop into a debugger
or live inspector), isolate parts of the program to run in a unit
test, or use interactive code execution in a debugger or REPL to
explore its behavior. Live examples in Babylonian Programming,
Exemplars, or Example-centric Programming settings need to be
manually created or "mined" from manually created test cases or
program runs.

A novel opportunity to help programmers understand code by
example presents itself with the recent emergence of large language
models (LLMs). An LLM is trained on natural language and coding
tasks – likewise "by example" – allowing us to fine-tune it to gener-
ate suitable examples in a specific domain for previously unseen
code.

Automating the Example. In this work, we are proposing an
approach to automatically generate live examples and a preliminary
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prototype in the Squeak/Smalltalk live programming environment.
We leverage an open-source LLM to generate realistic invocations
of the code of interest and execute the generated code in the live
programming environment. This allows programmers to obtain
a running instance of the part of the system they are currently
studying. Our approach is based on the automated synthesis of
tests but focuses on set-up and execution rather than coverage and
assertions to verify behavior.

Pre-trained code LLMs have several limitations that we address
in this work: (1.) They lack knowledge about Squeak/Smalltalk and
cannot reliably distinguish between different Smalltalk distributions
and versions. (2.) They lack specific and up-to-date knowledge about
the program the programmer is trying to understand. (3.) They are
trained on generic code completion or instruction following and
lack task-specific schemas they can apply to generate examples.

We address these challenges by (1.) fine-tuning an LLM on the
Squeak/Smalltalk image and the project the programmer currently
works with. Fine-tuning uses a data augmentation strategy that
attempts to put callers of methods in front of callees, thereby "teach-
ing" the LLM to generate realistic state and input data, and (2.)
presenting the LLM with relevant context surrounding the code
that requires an example.

The outcome is a framework that can integrate with existing
example-based live programming environments that subsequently
aid with using and maintaining generated examples.

2 BACKGROUND AND RELATEDWORK
First, we provide a (simplified) overview of the principles underlying
(large) language models and recent developments we will exploit in
this work. After that, we review some example-based programming
systems to illustrate the programming tools that would benefit
directly from automated example generation.

2.1 LLMs on Code
A language model is a function that, given a sequence of tokens,
computes probabilities for the next token following that sequence.
This stateless function alone does not lend itself to generating code,
but starting with an initial sequence (prompt) and repeatedly select-
ing among the most probable subsequent tokens, then appending
one to the current sequence for the next iteration generates a theo-
retically unbounded sequence (completion) as illustrated in Figure 1.
Generation stops when it reaches a special end-of-sequence token
or a pre-configured maximum length.

Tokens. Tokens in this context are independent of the language’s
grammar. They represent the most common substrings in the train-
ing data: programming language keywords and frequent English
words form a single token1. Less frequent words are split into
smaller tokens (e.g., "Smalltalk" as Small + talk), with individual
letters as a fallback. Current language models use between 30 000
and 52 000 individual tokens, including special tokens like the one
representing the end of the sequence (⟨𝐸𝑂𝑆⟩).

Generation Strategies. There are several ways to select tokens
from the language model: A greedy strategy would repeatedly select
and append the most likely token. However, this can miss better
1Curiously, that leads to the names of US presidents being single tokens.
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Figure 1: Generating code from a language model by repeat-
edly selecting a likely token and appending it to the current
context.
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Figure 2: Search-based code generation keeps multiple ex-
amples in memory and accumulates their total probability.
Only the most likely paths are continued, resulting in better
completions that hide behind tokens with lower individual
probability.

completions hiding behind the less likely tokens. A search-based
strategy keeps a set of completion candidates in memory (storing
their total probability). It incrementally extends each candidate
with several likely tokens, discarding candidates with the lowest
total probability. Beam search is a search-based strategy that can
be implemented efficiently on GPUs, keeping 𝑘 completions in
memory and extending each by the top-𝑘 tokens, discarding down
to 𝑘 after sorting by total probability (illustrated in Figure 2 for
𝑘 = 2). Sampling is a strategy where each token is picked randomly
according to its associated probability.

Search is a good choice if a single attempt at generating code
should be the best the model can output, while sampling allows
generating diverse completions.

State-of-the-Art Models. State-of-the-art language models, such
as CodeLlama [16], WizardCoder [12], or StableCode [14], are trans-
formers that chain two lookup mechanisms: The first one, called
attention, identifies for each token which other tokens are relevant,
considering both the token itself and its relative position (e.g. if the
token is an adjective, the attention mechanism might look for a not
token before as that would negate its meaning). The updated repre-
sentation of this "combined" context is fed into a neural network
that looks up the probabilities of the following tokens based on their
appearance in the training data. Several of such transformer blocks
collectively vote for the next token, each one seeing the previous
output, i.e., each new attention layer can now further combine pre-
viously combined contexts to learn higher-level abstractions and
refine the previous prediction.

The operations mostly rely on matrix multiplication, with matrix
elements making up the parameters of the model. State-of-the-art
language models have several billions of parameters, at which point
we will refer to them as large language models (LLMs).

Parameter-efficient Fine-tuning. When training data for a new
task is available, the parameters of an LLM can be updated to min-
imize the error on this new task. The task itself is formatted as
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Figure 3: Low-rank adaptation (LoRA) is a parameter-efficient
fine-tuning technique for LLMs that freezes the original
model parameters and approximates the diff to anymatrix as
a product of two much smaller matrices, yielding a compact
adapter that can be distributed separately and composed if
needed.

sequences of tokens the model should complete. However, updat-
ing all parameters of an LLM is still prohibitively costly for us.
Fortunately, we can make use of several strategies to fine-tune a
model on much smaller hardware than it was initially trained on:

(1) Freeze most of the parameters and only update a subset.
For example, we can freeze all parameters associated with
individual tokens, retaining their pre-trained "semantics" but
fine-tuning the attention mechanism. This still allows the
model to learn novel patterns in the data flexibly.

(2) Represent the "diff" between original and fine-tuned param-
eters in (lossily) compressed form. For example, we can ap-
proximate any (full-rank) matrix as a product of two smaller
(low-rank) matrices (see Figure 3). Representing the differ-
ence to each matrix in the original model as such a product
of smaller matrices is the core of the LoRA (Low-rank adap-
tation) method [9], further reducing the number of trainable
parameters during fine-tuning.

(3) Use less precision. Floating point numbers can be commonly
reduced to 16, 8, or 4 bits of precision without drastically
losing overall model capabilities. While we will use 16-bit
floating point precision in our experiments, variants of the
LoRA framework (QLoRA [2]) allow for fine-tuning 4- and
8-bit models.

A valuable aspect of the LoRA framework is that we can store and
distribute the resulting "diff" as only a few megabytes of data com-
pared to several gigabytes required to distribute the full LLM. Hence,
LoRA allows us to distribute "project-specific" adapters while keep-
ing the original model untouched and opens up the possibility to
quickly swap out multiple task- or project-specific adapters dur-
ing the programming workflow without having to retain separate
multi-billion-parameter models on disk or in memory.

Democratization of LLMs. Despite their extremely high training
costs, often including multiple terabytes of training data and several
100 000 GPU hours, many LLMs are openly available. Although

the most capable models, such as OpenAI’s GPT-4 [4], are only
available as a service, and open-source competitors with similar
performance would require expensive datacenter GPU setups, many
"small LLMs" are now available. For example, CodeLlama-7B [16]
is the smallest model of the CodeLlama architecture and fits on
one high-end consumer GPU (14GB of GPU memory in 16-bit
float representation), more recent models [14] achieve comparable
performance with half the memory requirements. Such models
generate whole method completions of about ten lines of code
within two seconds.

With the emergence of parameter-efficient fine-tuning, training
such models for new tasks on consumer hardware has become
feasible. These novel capabilities allow tool builders to incorporate
LLMs locally into programming workflows without depending on
an external service and associated cost and privacy concerns.

2.2 Examples in Live Programming
Live programming offers the opportunity to observe changes to
a running system immediately. Since the whole program is not
always running and programmers might need to explore individual
aspects in isolation, introducing smaller, reproducible examples that
react immediately to changes in code (and the examples themselves)
carries the live programming experience over to smaller scopes
such as individual methods or classes.

In this work, we will use the term Example to refer to a concrete,
reproducible execution of a part of the program. In object-oriented
programming, an Example for a method will consist of a concrete
instance of its class with its relevant state already set and all of
its arguments. According to this definition, the Example does not
necessarily involve code (as in "usage example" for an API) but can
be specified by a set of run-time objects and data.

Programming by Example. Examples can be used to specify the
behavior of yet-unwritten code and might remain part of the pro-
gramming environment to serve as future documentation. The de-
gree of automation and immediacy ranges from manually writing
code to match the example behavior, like in test-driven develop-
ment (TDD), to automatically synthesizing code based on a desired
exemplary outcome.

For example, SnipPy [5] fills in Python lines based on programmer-
specified variable values or return values and keeps the example
close to the code to workwith both simultaneously.Maniposynth [7]
additionally maps changes to an Example directly to changes to
the underlying source code, allowing to program entirely in the
example domain.

Program Comprehension by Example. When used in connection
with existing code, examples allow programmers to observe the
behavior of their code in concrete instances and enable exploring
the consequences of a change in a concrete scenario. The more
immediate feedback localized to the scenario and code of interest
allows faster iterations.

An early instance of this principle is Example-centric Program-
ming [3], which traces a program provided with exemplary input,
illustrating the fine-grained effects of every statement on the Ex-
ample. Exemplars [1] are constructs in the Newspeak programming
system that provide concrete instances for classes and arguments
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Figure 4: Core elements of Babylonian Programming: The
programmer-curated Example (1) provides an instance of the
class and arguments for the method call to construct a full
execution context. Probes (2) render dynamic data captured
during the execution of the method – here, the content of the
canvas – and are always updated immediately after code or
Example changes. Replacements (3) allow programmers to
isolate the Example from an irrelevant state by skipping the
execution of an expression and proceeding as if it evaluated
to the specified value.

to their methods so that code is always runnable. This allows the
evaluation of arbitrary expressions inside the source code using the
example data. A more recent incarnation of this principle, called
Example-based Live Programming (ELP), is Babylonian Program-
ming [15].

Babylonian Programming. Babylonian Programming (BP) is in-
spired by how ancient Babylonians expressed their algorithms - in
terms of concrete examples right next to the instructions [15]. A
BP-enabled programming environment introduces several concepts:
(1.) the Example2, (2.) Probes as a way to observe concrete behavior,
and (3.) Replacements to override expressions with user-controlled
values as illustrated in Figure 4.

In BP, an Example provides concrete values to run a particu-
lar code section and, optionally, display its final result. In object-
oriented environments, this includes example instances of classes
(so that a realistic value of self can be assumed) and example
arguments needed by a method call.

A Probe can be attached to any expression, showing its value
under the currently active Example(s). Probes are updated immedi-
ately on each change, i.e., the affected code path is re-executed in
the background. They can use rich, domain-specific visualizations,
e.g., displaying the content of a drawing buffer to help users trace
its evolution.

Example Mining. A way to obtain examples is to capture them
from the live environment using program instrumentation [11].
The environment needs to run the code of interest with realistic
data by executing test cases or recording a realistic interaction with
the program. The latter is challenging, as the user needs to start
and stop the recording, and captured live object graphs can be large
and highly connected compared to isolated test objects. Based on

2We capitalize the term to refer to the live Examples in Babylonian Programming
rather than the generic term

the attributes required by the code of interest, such object graphs
are pruned to store only a minimized example.

3 EXAMPLE GENERATION
Our setting in this Squeak/Smalltalk-based [6] prototype envisions
programmers requesting an exemplary method execution of the
method they currently observe in their programming environment.
The system would generate the example and run that method,
automatically performing the necessary setup and instantiating
arguments with an LLM’s help.

We consider three phases in this framework, of which we cur-
rently implemented the first two in our prototype:

Fine-tuning We fine-tune an LLM to learn our concrete ver-
sion of the standard library, best practices, and project-specific
APIs. This process takes place at the beginning and once the
system changes significantly.

Querying Once an example is requested, the system collects
context, prepares a prompt, and passes it to the LLM. It
compiles and executes the completed example.

Reification The result is reified using mechanisms like Exam-
ple Mining or conversion to a Babylonian Example. From
now on, the example is maintained through ELP tooling,
such as Babylonian-Programming-enabled editors, and can
be version-controlled.

An overview of the entire system is depicted in Figure 5.

3.1 Fine-tuning
Code-generating LLMs have a moderate understanding of Smalltalk
despite mainly being trained on more common languages. However,
while generating syntactically valid code, they tend to mix up differ-
ent Smalltalk distributions and versions of the standard library and
do not know the program for which they should generate examples.
By fine-tuning, the LLM can reinforce or learn the following novel
aspects:

(1) Distribution-specific best practices and standard library us-
age

(2) Task-specific additional syntax that we can use to inject and
generate additional information beyond pure Smalltalk

(3) Project-specific coding styles and abstractions that the LLM
can re-use to generate realistic examples within the program

(4) Existing examples from unit tests and code comments that
the LLM can re-use and re-combine to form new examples

Challenges in Causal LanguageModeling. LLMs can be fine-tuned
efficiently by presenting all the source code simultaneously. E.g.,
given the sequence 𝐴𝐵𝐶 with tokens 𝐴, 𝐵, and 𝐶 , the completions
𝐴 → 𝐵, 𝐴𝐵 → 𝐶 and 𝐴𝐵𝐶 → ⟨𝐸𝑂𝑆⟩ can be predicted and the
errors back-propagated in parallel as they share most computation.

First, an essential technical constraint with the above training
procedure is the limited size of the context window, which requires
us to separate the training data into individual blocks3. For example,
a class definition could end up in a different block than some of its
methods, so the model does not learn that the method uses variables
declared in the class. Also, existing examples (e.g., unit tests) should

3Our blocks turned out to be even smaller (256 tokens) than the maximum context
size of the LLM (4096) before running out of GPU memory.
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Figure 5: Interactive example generation assisted by an LLM: (1.) The base system and project are analyzed, creating training
data. (2.) A pre-trained LLM is fine-tuned with that data, generating a low-rank adapter. (3.) When users request an example, the
immediate dependencies of the method of interest are gathered using backward program slicing and serialized. (4.) A prompt
that asks the LLM to complete an example is generated. (5.) The LLM output is compiled and run, allowing the user to inspect
the dynamic behavior via debugger or ELP tools. In our prototype, the fine-tuning loop (1. and 2.) takes about an hour and runs
once in preparation and then infrequently, while the interactive loop (3. – 5.) takes a few seconds.

ideally be in the same block as their exemplified method (e.g., the
method under test).

Second, the left-to-right completion requires careful considera-
tion of the order in which we present training data. For example, if
we prefer completing methods that use local variables from the class
definition, the methods should always follow the class definition
in training data. If we prefer to generate examples for a method, a
test case (an example) should follow the method under test.

Third, when trained with classes with multiple methods, the
model will output a potentially unbounded number of methods
and never stop by itself. Since Smalltalk has no notation to delimit
classes and methods, we introduce one by re-using the LLM’s exist-
ing knowledge about XML by wrapping class definitions in <class>
... </class> and methods in <method> ... </method>. Despite the
unnatural mixing of XMLwith Smalltalk, the LLM reliably responds
in this format after a few hundred examples.

Generating training data. To address the challenges of having
relevant training data in proximity and the right order, we extract
classes and methods from the Squeak/Smalltalk image and apply
the following processing steps:

(1) Exclude methods spanning multiple blocks.
(2) Insert redundant class definitions. Smalltalk has no separate

"class syntax" but creates classes calling a subclassmethod on
a superclass and passing the class name, instance variables,
and class variables. After every ten methods, we insert this
specific call to "remind" the LLM of how the class looks.

(3) Pair callees with callers so that the LLM learns to generate
code that calls previously defined methods.

We filter out any empty method, outliers with many arguments,
variable and class references, deep nesting, and large test cases to
improve data quality. This cleaning step leaves us with about 80%
of the original methods in the Squeak/Smalltalk image as training
data.

Technical implementation. We implemented the data collection
in Squeak/Smalltalk. To obtain call graphs, we temporarily instru-
mented all methods in a package using context-oriented program-
ming [8] to collect call graph edges, then all tests of that package
are executed. Cross-package dependencies are not recorded this
way, but relevant relationships within each package are captured
with reasonable run-time overhead and stability compared to a full
system instrumentation. We exclude kernel packages from tracing
since instrumenting such low-level facilities can have unintended
side effects. This code is still part of the training data but in alpha-
betical rather than call-graph order.

Our library exports all class and method definitions and known
call graphs. We performed the data preprocessing and fine-tuning
in Python. We used CodeLlama-7B [16] as the pre-trained model
and LoRA (with rank 16) for efficient fine-tuning. We implemented
the fine-tuning using PyTorch and the transformers and peft libraries
and trained for two epochs on ≈ 60 000 methods.

Fine-tuning took less than an hour on a high-end consumer PC4,
making it feasible to re-run should the underlying system change
significantly.

4Tested on an AMD Ryzen 7 7800X3D CPU, 64GB DDR5 memory, and NVidia RTX
4090 GPU with 24GB video memory
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itself, along with a stub for a test case supposed to run m. If no
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will still be included.

3.2 LLM Querying
The basic principle is to ask the LLM to generate a test case for the
method of interest, relying on fine-tuning to incorporate knowl-
edge about the construction of the method’s receiver (self) and
arguments. We are not interested in the assertion but in setting up
an example instance of the class and calling the method, which we
emphasize in the method comment. A minimal prompt can be seen
in Listing 1.
<class >

Superclass subclass: ExemplifiedClass

"... Class definition ..."

</class >

<method >

ExemplifiedClass >> exemplifiedMethod
"... Method definition ..."

</method >

<class >

TestCase subclass: ExemplifiedClassTest

"... Class definition ..."

</class >

<method >

ExemplifiedClassTest >> testExemplifiedMethod
"Set up an example instance of 'ExemplifiedClass '

and call method 'exemplifiedMethod '"

[Complete from here]

Listing 1: Structure of a generated prompt. Class and method
definitions are taken from the Smalltalk image, while the
test class is generated to match the class and method names.
Completion will generate a short unit test.

The fine-tuned background knowledge, however, can become
outdated and is subject to hallucinations (e.g., an argument named

request might be filled with the result of the call Request new, al-
though the class is named WebRequest). Fortunately, LLMs tend to
imitate and repeat patterns occurring in their prompt. This charac-
teristic allows us to reduce hallucinations by incorporating context
that demonstrates how the method is called in practice, including
the necessary set-up code.

For methods with associated call graph data (constructed during
fine-tuning), we select actual callers and methods that set variables
required by the method of interest. Outside call graph coverage, e.g.,
for novel methods, we heuristically identify callers as methods in
the same class referencing themethod’s name. The context selection
and serialization procedures are illustrated in Figure 6.

In the Smalltalk image, the LLM response is rewritten to repre-
sent a test case with a specific category for generated tests (thus
not polluting the existing test suite) and a specific superclass where
assertion methods are overridden to prevent failures. The compiled
test case is run. At this point, we can integrate future tooling: An
active example miner can record the live objects instantiated by
the generated test and attach them as Babylonian Examples to the
method.

3.3 Usage Example
The preliminary prototype that implements this functionality in
the Squeak/Smalltalk browser is illustrated in Figure 7. For now, a
simple button triggers the above generation cycle. In this example,
the method implementing an HTTP GET request is used as method
of interest, and a breakpoint (self halt) has been inserted to
summon a debugger that can inspect the LLM-generated state.
The code generated by the LLM is shown in Listing 2. Note that
the WebClient implementation only has integration tests that test
against an isolated mock server. A test case similar to the one
generated is not included in the training data but might have been
inferred from the method comment. The fact that the LLM uses
a block to handle the request object could be inferred from the
context, which included a caller to that method.

WebClientTest >> testHttpGetDo
"Set up an example instance of 'WebClient ' and

call method 'httpGet:do:'."

| client |

client := WebClient new.

client httpGet: 'http ://www.squeak.org'

do: [: request |

self assert: request method = 'GET'].

Listing 2: Test example generated by our fine-tuned
CodeLlama-7B

4 DISCUSSION AND OUTLOOK
This prototype demonstrates that local LLM fine-tuning and ex-
ample generation have become feasible on consumer hardware,
even for less prevalent environments like Squeak/Smalltalk. It also
shows how many moving parts and design decisions must be made
to integrate generative AI into a programming workflow.
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Figure 7: Screenshot of our initial prototype. The Smalltalk
browser has selected the httpGet:do: method of the
WebClient class. (1) A novel "Exemplify" button initiates ex-
ample generation. The button color indicates whether an
example has previously been generated successfully and can
be re-run (green) or would be generated first (red). (2) We
inserted a breakpoint into the method. (3) Clicking the "Ex-
emplify" button triggers the breakpoint and summons a de-
bugger. We see that the LLM has chosen to call the method
with the example URL that often appears in code comments.
The call stack shows the generated test case.

4.1 Limitations
Our current approach to using a small, fine-tuned open-source LLM
brings several yet unsolved challenges and limitations. The quality
of the output hinges on many factors. We noticed that any of the
following decisions can have a significant impact on the capabilities
of the LLM-based tool:

• Selection, formatting, ordering, and augmentation of training
data

• Hyperparameters, such as learning rate, size of the low-rank
matrices, and number of epochs

• The selected method to generate code from the LLM’s prob-
ability distribution (e.g., greedy, sampling, or beam search).

• The method to determine when to stop generation
• Special syntax used for fine-tuning and prompting
• Selection of relevant context
• Formulation and generation of prompts

Since the system as a whole is responsible for the programmers’
experience, optimizing these aspects in isolation is hard.

For example, a more "logical" ordering of training data might
result in a better-trained LLM as judged by loss metrics. However,
the model might generalize poorly from the provided context when
used in practice. On the other hand, additional syntax like the in-
troduced XML tags makes it easier to stop generation and helps
the model learn the output format we expect, but will inevitably

increase loss during training since XML is rarely combined with
Smalltalk code. A significant challenge that will remain is the se-
lection of proper context to generate meaningful examples. We
found through experimentation that the neighboring nodes in a
program slice are helpful as they show how a method can be called.
The model can generate working examples without this data, al-
though with a higher chance of misinterpreting argument names
and hallucinating "shortcuts" to fill them.

Our current training data augmentation relies on test coverage to
simplify program analysis and slicing. However, when the code base
is sufficiently covered, methods like Example Mining are less error-
prone and preferable over generative AI. The general principle,
however, will likely work with static analysis in the absence of
tests.

4.2 Evaluation
An essential next step to address the abovementioned challenges
is creating an evaluation framework for LLMs in live program-
ming environments to allow systematic experimentation with each
variability source.

We plan to obtain evaluation data from the broader Smalltalk
ecosystem and categorize methods by the complexity of the re-
quired example (primitive data, nested/structured data, instantiated
objects, complex object graphs, and callbacks) to gradually test and
extend our framework’s capabilities. While speed and correctness
can be measured by executing generated examples on the bench-
mark dataset, utility and explanatory power are much harder to
operationalize.

We first plan to contrast generated examples with examples
mined from actual usage and unit tests, quantifying how closely
the generated object graphs resemble recorded ones. A second
step would employ a more capable LLM (e.g., GPT-4 or a smaller
LLM specifically fine-tuned to judging examples) to evaluate the
generated examples. This evaluation method is known as LLM-as-
a-judge [19]. Human subjects should evaluate a subset of examples
in a controlled study.

Apart from using GPT-4 to pilot and scale up a "user" study,
we will compare our outputs to those generated by GPT-3.5 and
GPT-4 - based on initial experiments (see Figure 8), we expect
more comprehensive and illustrative examples with the trade-off
of encountering more hallucinations due to mixing up Smalltalk
distributions and versions.

4.3 Integration and Interaction
Multiple Examples. Our prototype currently generates a single

example. The next step will be the generation of multiple examples
in parallel. The overhead is negligible: 16 parallel generations only
take about 50% longer than a single generation due to how GPUs re-
use cached LLM parameters. Programmers can subsequently select
among several answers, reducing the risk of the single answer being
faulty or unhelpful.

Moreover, we can generate based on different prompts in parallel,
e.g., including different contexts in each, to obtain a variety of
examples and increase the chance that one is very useful. How to
select the most useful one for the user automatically remains an
open question.
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System: You generate usage examples that help understand
source code given in Squeak/Smalltalk. The user provides
the source code to be illustrated. You answer with executable
source code in the Smalltalk language that calls the method
provided by the user with a realistic example.

User: (Provides the WebClient >> httpGet:do: method)
Assistant: Here is an example code demonstrating how you

would use the `httpGet:do:` method:
```Smalltalk
| webClient |

webClient := WebClient new.

webClient httpGet:

'https :// jsonplaceholder.typicode.com/posts/1'

do: [: request |

Transcript show: request asString; cr]

```

Figure 8: Using GPT-4’s chat API for example generation (line
breaks inserted manually to fit the paper).

Babylonian Programming. The framework is currently indepen-
dent of any implementation of Example-based Live Programming.
However, we aim to integrate LLM-based example generation into
Babylonian Programming to extend the scope beyond manually
curated Examples.

Additionally, we can use the LLM to interactively refine exist-
ing Examples or use them as context to improve example genera-
tion for new code passages. We will further explore ways to use
programmer-placed BP elements (such as Probes) to inform the
LLM about important context or places to be reached by the gener-
ated example. The execution of BP Examples yields valuable tracing
data for further refining our context selection.

Automated Re-Fine-Tuning. A fine-tuned LLM will eventually
become outdated as the software evolves. However, new code be-
comes available when programmers work with the software, and
live objects and user interaction can be recorded and used for train-
ing.

Our prototype was limited to a cold start by only relying on
source code and automated dynamic analysis, but manually execut-
ing the program (e.g., small experiments done in a REPL/workspace,
objects encountered during debugging, etc.) and the users’ behavior
(co-changed methods or navigation between code locations) pro-
vide valuable contextual data and thus opportunities for improved
fine-tuning and prompting.

External Data and Documentation. Examples can originate from
outside the programming environment. Mailing lists, data on col-
laborative development platforms (e.g., GitHub issues, pull requests,
and discussions), documentation, and requirements are possible
sources of examples. They can be provided as additional context
to the LLM to make them executable. The TestPilot system [17],
for example, uses usage examples from documentation to generate
tests.

Retrieving the most relevant data from a corpus of such docu-
ments is an information retrieval problem, and generating from
such a context is known as retrieval-augmented generation (RAG).
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Figure 9: Using retrieval-augmented generation (RAG) to
pull examples from external data sources. The relevance of
each item is scored by its proximity to the original context
(here, the method of interest m and its caller a) in the embed-
ding space. The most relevant items are included in the LLM
prompt.

Current implementations use embedding functions to establish
semantic similarity. They project both the initial prompt and all
available information items into the same high-dimensional vector
space (the latter being done once ahead of time), and then the near-
est items are selected as context (see Figure 9 for an augmented
example based on Figure 6). The embedding function can be fine-
tuned to the domain or task context if positive and negative samples
(e.g., a prompt, a related item, and an unrelated item) are available.

While RAG can be a powerful addition to our framework, more
design decisions have to be made, such as the choice of embed-
ding function and the granularity of external items (should we
embed and retrieve whole GitHub issues or split them into smaller
chunks?). Also, the same problems that influence the quality of the
prompt (e.g., selecting project-internal context) influence what we
can retrieve externally.

Considerations when Using External Data in LLMs. We must con-
sider various ethical and legal implications when incorporating
open-source community content whose creators rarely benefit from
or know of their involuntary contribution to LLM training data.
These could involve ensuring proper attribution, obtaining consent,
respecting opt-outs, complying with possibly mixed licenses, and
contributing back to the community.

Although the generated code is mainly invisible to the user of our
system, LLMs still have a chance to reproduce content close to some
original training data, thereby subjecting its users to plagiarism-
and copyright-related uncertainty.

CONCLUSION
The capability of large language models to generate code and re-
cent developments in fine-tuning and minimization made them a
relevant component in building tools for programming activities.
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We demonstrated how we can leverage a locally hosted LLM
to assist programmers in the Squeak/Smalltalk live programming
environment in obtaining runnable examples for code they are
attempting to understand. The proposed integration into Babylo-
nian Programming promises further program comprehension and
programming education benefits.

The surprising number of design decisions in such a system,
ranging from fine-tuning data over context selection to prompt
engineering to control the somewhat unpredictable behavior of
pre-trained LLMs, is both a challenge for tool developers and an
opportunity to build highly specialized tools for an improved pro-
gramming experience. Our proposed framework serves as a starting
point for a more systematic and holistic evaluation of these design
decisions in the context of example generation and program com-
prehension.
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