What can go wrong if | change this line?
Test Failure Prediction Using Natural Language and Al

-~
2
%) Toni Mattis Software Architecture Group /

Robert Hirschfeld HPI, University of Potsdam, Germany \
- /
Potsdam | 14. Nov. 2024 <\>< \
=)

/

How do we know a Program is “correct”?

Syntax & Semantics e Compiled

Formal Properties @

® Type System

Type-checked

Integrity & Stability

F L -f d Guarantees of OS/Runtime
ormatly ventie A program cannot be .

“correctin isolation,”

Code Quality Guidelines but cons!s.ten’g with a
, specification

o
Code review

User

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 2

Automated Testing

def with tax(country, amount):
Unit under test return amount * (VAT[country])

def test tax _germany():
result = with tax(countries.DE, 100) (::Z:)

Unit test assert result == 119 o
[:
Expected outputs and behavior Example inputs and usage

“Specification by example”

“Executable documentation”

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 3

Tests and Feedback

Test feedback helps catch defects early
4 Running many tests delays feedback
Goal: Run relevant tests first.

| X ,|

Flask: 442 Tests, a few minutes

Berlin-based company: 279 Tests, 18h(!) [l

—

[1] Elsner et al. 2021: https://dl.acm.org/doi/abs/10.1145/3460319.3464834

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPl Potsdam 4

https://github.com/pallets/flask/tree/main/tests
https://dl.acm.org/doi/abs/10.1145/3460319.3464834

The Test Prioritization Problem

How do we know which tests are
relevant* to a change?

*) fail if the change introduces a defect (regression)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPl Potsdam

Main Approaches Ln

{ Coverage
Prioritize tests that cover code overlapping with the change
'\ { — } by program analysis (ste.atic) or running tests (dyngamic)

())
} 4 Dynamic languages 4 Becomes outdated

History COCOCO

Prioritize tests that failed previously
Requires plenty of data (for similar changes) @
¥ Requires planty COCOCH
(N [)
— { {
: word Natural Language
word 1 } T Prioritize tests with vocabulary / concepts
\}) \. J overlapping with the change

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 6

Natural Language

Programming: “explaining to other programmers (+ your future self)
how to make the computer solve a problem”

20241114 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 7

How to compute? What to include?
(similarity of natural language) (context surrounding change)

b b
“Prioritize tests that share vocabulary with the changed code”
R
Which exactly?
(relevance of words)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 9

Term Importance | TF-IDF IE

Changed lines Test case
R - [T :
def login@pass) | def test correct_password():

if|se1f]check|user,]pass): -

(user J(self])example [user()

self
Term frequency user Term importance
(TF)) Inverse Document
login Frequency (IDF)
» X
password dot component-wise
product multiplication
All tests
test

Tests with term t

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 11

Term Importance | Predictive Value IE

Weight terms according to how well they predicted previous test
failures (precision)

Terms co-occurring between change and tests

°) [A A (50%)
B ’__

............ YECECECESES Without history: IDF

With history: Precision

— {

} e)
J B (100%)

Precision = #fails / #tests in which a term co-
occurs with a change (replaces IDF in TF-IDF)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPl Potsdam 12

Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

—— o —— oy,

(def Xhe110) _wor1d) O XQn XA) print &:eeees Generation
|\ " .
N .

Select next token

Language Model
>
Vocabulary
P(t |t 1o return >
(tnltn-1, -, t1) C) All known tokens

é .

o o .

Often GPT Architecture . . -

Generative pre-trained J
transformer Next token probabilities

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

13

Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

Cdefﬁlellcbc_worldX()U\n X\t Xpr‘int)\’:(__:K.E

Language Model @
P(tnltn—lr ""tl) @

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

Cdefﬁlellcbc_worldX()U\n X\t Xpr'int X():f‘::,‘(-;

Language Model @ :
P(tnltn—lr e tl) @

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

15

Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

Language Model

P(tnltn-1, -, t1)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

16

Large Language Models

def hello world(): | Input (Prompt)

; Tokenization
Cdefﬁlellcbc_worldX()U\n X\tXprint X(X“) XX
\ - ~~ _J _J
S
P(tnltn—lr 200] tl)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPl Potsdam

17

Large Language Models | Test Prioritization IE

¢ Instead of generating code, let the LLM output the probability of
existing code

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 18

Large Language Models | Test Prioritization

p(Existing Code) =P1 X ..X Py
Pretend we’re generating it

p

Di n
Cdefﬁlellcbc_worldX()U\n X\t Xr'etur*nHHello X wor'ld

Language Model .
Lookup probability p;

of each existing token t;

P(tnltn-1, -, t1)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

19

Large Language Models | Test Prioritization IE

Instead of generating tests, let the LLM output the probability of
existing tests in response to a change. Run most probable test first.

P (Test| Change) ~ P X ... X Pp

(Change XTest CD
|

\. probabilities

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 20

Large Language Models | Test Prioritization IE

=" Format a prompt and append each test, scoring its probability
" Comment out deleted code
= Retain lexical scope

class AClass: # /src/the_file.py
class AClass:

def init (self):

"""""" > def method(self):
return self.value
def method(self): return self.value + 1
- return self.value
+ return self.value + 1 # Test validating this change:
Change LLM Prompt

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 21

Large Language Models | Embeddings IE

Vectors for (textual) data so that the proximity of two vectors
measures the semantic similarity of their associated data

def foo():

sim(a; b) =
S
A def foo(): ..

\u J . !

Y : ..":.

Encoder i -
(Bi-directional Transformer) .»,
def bar(): ..
1 : def test foo(): ..
® o

def test bar(): ..

2024-03-12 Mattis, Bohme, Krebs, Rinard, Hirschfeld | Faster Feedback with Al? | Software Architecture Group 22

NLP- and Al-based Test Prioritization E

Order tests so that ... run first

1. TF-IDF: Tests with (important) terms shared with changed code

2.
3. LLM: Tests most likely generated to test a change
4. Embedding: Tests semantically related to a change

But which one is the best?

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 23

Fvaluation | Metrics IE

=" Performance: average percentage
of faults detected (APFD)

= Computes the area under the curve au
that plots the percentage of :aut: @®@®@
uncovered faults so far (y-axis) over @@@@@
the percentage of already executed rauits @@@@

tests (x-axis)

Percentage
of Faults

Test Suite Progress

2024-03-12 Mattis, Bohme, Krebs, Rinard, Hirschfeld | Faster Feedback with Al? | Software Architecture Group 24

Obtaining Test Failures | Mutation Testing Ln

Mutants n=n+1 n=n-1
(" h 4 h if logged in: if not logged in:
T { _ { HTTPError(404) HTTPError(405)
— || ¥ — 1 Defect config[“key”] config[“”]
. 1) e
7 ~\ Run tests per mutant

Code

— 1

= | 7 COCEOCECOCOC O E

. J
(— { \ 4 No realistic changes, defects, and test results

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 26

Obtaining Test Failures | Change Mutation Testing Ln

Version n Diff Version n+1
Repeat for many versions (Git commits)

4) 4)
— P of — |1 O OO K
+ —
} —— } Controlrun
- J _ \ J
: Mutation - N
v
— {
— — | O ECEX
} == Synthetic failures
_ Y,
Faulty diff ~

Fault distribution follows real changes

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 28

Results | Example: Flask

Surprise: TF-IDF (a very simple algorithm) sometimes beats Al

Fault detection (flask)

1.0 A L
-O . A:’-;-}-A ----------
) -
't; 08 7 _;.',-
8 —_ "_..-.._.._.:'.
[} _,.f’
-o I
8 -
S 0.6 -
L N 1 | Y
L Y
g 0.4 - — |Im (APFD = 0.890)
5 —— embed (APFD = 0.923)
O —— embed (whole) (APFD = 0.922)
2 0.2 1 —— bm25 (APFD = 0.931) TE-IDF
=== rand (APFD = 0./709Y)
----- default (APFD = 0.629)
0-0 : 1 1 1 1 1
0 100 200 300 400 500
Number of tests executed
2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPl Potsdam

29

Results | Example: Jinja

In most larger projects, an embedding-based test ordering is best

Fault detection (jinja)

1.0 -
©
Q
0 0.8 -
3
()
©
]
S 0.6
O
L|6 :--
304 ; T — |Im (APFD = 0.874)
£ L —— embed (APFD = 0.934) Embedding
g g —— embed (whole) (APFD = 0.896)
9 0.2 —— bm?25 (APFD = 0.863)
—== rand (APFD = 0.817)
------ default (APFD = 0.750)
0.0 -

0 200 400 600 800
Number of tests executed

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

Results | Discussion

= | | Ms are “too nuanced” and currently too expensive
= Penalize tests for bad practices (“Wouldn’t have written such test”)
= Overhead: 10 - 20 ms GPU time > execution time of average unit test

= Often simple heuristics (e.g. TF-IDF) are competitive

= Limitations and Next steps
= Models only pre-trained: Fine-tune LLM and embedding models on tests
= Synthetic data: Run the experiments on real historical data
= Additional features (e.g., commit messages)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 31

Natural-language based Test Prioritization

Term Importance | TF-IDF

Changed lines Testcase
f :
def login{user,]pass): daf tes rrect_password():
s# (et check{ser) pass): (558 3 (eI} exomple [ser)
m— ' L
............... ;
self
Term frequency user Term importance
(TF)) Inverse Document
login ° x Frequency (IDF)
password dot component-wise
product muliplcation /N Attests
Io; 7} e
test g(nr

20241194 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

Large Language Models | Embeddings

Vectors for (textual) data so that the proximity of two vectors
measures the semantic similarity of their associated data

def foo():

sim(a;b) =
D00 S
def foo(): ..
Encoder :
[Rd]
def bar(): ..
H def test_foo():
® .

def test bar(): ..

3|

Tests with term t

2024-0312 Matis, Bohme, Krebs, Rinard, Hirschfeld | Faster Feedback with A7 | Software Architecture Group

Large Language Models | Test Prioritization Ln

Instead of generating tests, let the LLM output the probability of
existing tests in response to a change. Run most probable test first.

P (Test| Change) ~

(Change
LLM QO mmm
probabilities
2024114 Mattis, Hirschfeld | NLP & Al Test Prioritzation | Software Architecture Group | HPI Potsdam 20

Obtaining Test Failures | Change Mutation Testing E

Versionn Diff

Version n+1 1
Repeat for many versions {Git commits)

wofr COOXCOCOC®

Control run

M

- COCOCECO

Synthetic failures

Faulty diff

Fault distribution follows real changes

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 28

Contact:

4 toni.mattis@hpi.de

@ https://toni.mattis.berlin

Results | Example: Jinja Lﬂ

In most larger projects, an embedding-based test ordering is best

Fault detection (jinja)

o

e
By

e
S

Percentage of faults detected

04 —— Iim (APFD = 0.874)
Embedding
024 F —— bm25 (APFD = 0.863)
== rand (APFD = 0.817)
+ default (APFD = 0.750)
0.0
0 200 400 600 800
Number of tests executed

20201114 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Rotsdam a0

20241114

Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 32

mailto:toni.mattis@hpi.de
https://toni.mattis.berlin/

Backup Slides

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 33

Selected Publications

1.

2.

3.

T. Mattis, L. Bohme, E. Krebs, M. Rinard, R. Hirschfeld, Faster
Feedback with Al? - A Test Prioritization Study, Programming with Al
(PAI/24), Lund, Sweden, Mar. 2024

T. Mattis, P. Rein, F. Dursch, and R. Hirschfeld, RTPTorrent: An Open-

source Dataset for Evaluating Regression Test Prioritization, 17"
International Conference on Mining Software Repositories (MSR),
Seoul, South Korea, May 2020

1. Mattis and R. Hirschfeld, Lightweight Lexical Test Prioritization for
Immediate Feedback, The Art, Science, and Engineering of
Programming, Vol. 4, Nr. 3.

D. Meier, T. Mattis, and R. Hirschfeld, Toward Exploratory

Understanding of Software Using Iest Suites, Programming

Experience (PX/21), Cambridge, UK, Mar. 2021

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPl Potsdam

34

https://dl.acm.org/doi/abs/10.1145/3660829.3660837
https://dl.acm.org/doi/abs/10.1145/3660829.3660837
https://dl.acm.org/doi/abs/10.1145/3660829.3660837
https://dl.acm.org/doi/10.1145/3379597.3387458
https://dl.acm.org/doi/10.1145/3379597.3387458
https://dl.acm.org/doi/10.1145/3379597.3387458
https://dl.acm.org/doi/10.1145/3379597.3387458
https://programming-journal.org/2020/4/12/
https://programming-journal.org/2020/4/12/
https://programming-journal.org/2020/4/12/
https://dl.acm.org/doi/abs/10.1145/3464432.3464438
https://dl.acm.org/doi/abs/10.1145/3464432.3464438
https://dl.acm.org/doi/abs/10.1145/3464432.3464438

L/
O
O
O
>
2
o
-
>~
.l_“p
-
O
=
)
T
D
4
Q.
)
O
-
O
)

Aouanbaly

a1ep
911}
1sod
10419
day
llewa
aweu
Jesn

a1ep
9111}
1sod
Jolle
dauy
llewa
aweu
Jesn

a1ep
9}
1sod
10419
day
llewa
aweu
Josn

a1ep
91}
1sod
Jolle
day
llewa
aweu
Josn

a1ep
2N
1sod
Jolle
day
llewa
aweu
Jasn

35

Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

20241114

Conceptual Similarity | Topic Models

frequency

Distributional hypothesis: Terms that are present or absent together
refer to a similar concept (topic)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 36

Conceptual Similarity | Topic Models

4 p
— {
}

. J

frequency

-

2
&

[

t—Hr‘Ht—H

- o =
(]

E @©

5 E

c o

2024-11-14

Topic 2

http
error

post

Topic 3

title

date

||'
\,ﬁ

=

Topic 1
Topic 2

Topic 3

Topic 1
Topic 2

Topic 3
Topic 1
Topic 2
Topic 3
Topic 1
Topic 2
Topic 3

Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 37

Conceptual Similarity | Prioritizing with Topics

Changed lines Test case

def login(user, pass): def test correct password():
if self.check(user, pass): .. user = self.example user()

v v
Topic 1
4...
Topic 2 »
%3965822 dot %zgq&)t—n\n\u
g ;G;J 9 g 5»0 85 % T0p|03 product Jq:_) E) 9 03) Term Importance | TF-IDF IE
(@) o (@)
(@)
— N (40}
(@) . .
s = 5 4 Synonyms, abbreviations,
o o .
= = abstractions, ...

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 38

Term Importance | Predictive Value

Use terms that predicted past test failures

Changed lines

if user.check(pass):

raise HTTPError(403)

Future change:

if user is None:
raise HTTPError(403)

20241114

user error
http http

> (L
> (L (_CF)

user
pass

user user error
http pass http
2nd 3rd
user(90.5) user(0.5)
http(9.5) pass
= 1.0 = 0.5

user 2 1 50%
pass 1 1 100%
error 1 1 100%

http 2 1 50%

o - o

o
Ch O & N
Q . PO o)
) 2 Q@

error(1.0)
http (0.5) %
= 1.5

Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

Evaluation Details Ln

Dataset: Python projects

= Well-tested
= Tests must run reproducibly many versions into the past (~10 years)
= Only include tests that pass an (un-mutated) control run

Commits | Tests LOC
(Param.) Changed

Flask 390 (442) 12.5
Requests 43 314 (557) 188 13.8
Jinja 68 655 (829) 420 15.2

LLM-Based experiments:
= Performed on NVidia RTX 4090 (24GB GPU Memory)

= Models: Codellama-7B (initial), StableCode-3B (in the paper),
CodeGemma-1.1-2b (now)

20241114 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 40

Bi-term Topic Model for Code Lﬂ

= Traditional topic models (e.g., LDA) designed for documents

=" Code has a smaller vocabulary than natural language documents,
less redundancy, and a hierarchy/graph-like structure (no
apparent document boundaries)

(\ Syntax Tree
TR ey ©
— Probability of names Probability of names
. co-occurring belonging to concept/topic ¢
}
\. J/ v v v
Co-occurrence relation P(a, b|C) = p(alc)p(blc)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 41

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

Fitting a Code Topic Model via Edge Clustering

Co-occurrence
relations:

A, Multigraph
(many edges per
pair of nodes)

1. Randomly color edges 2. Re-sample edge color 3. Assign color,
from adjacent edges repeat 2. & 3. for each edge
\)
Y

(1 4+« Iterate until
¢ = ' Convergence. Then:

Gibbs sampling 2+ 2a
(Monte Carlo p(cla,b) = 5 2+ a Topics = colors
Cc =
methOd) \2 + 2 ' Edges from a

a,c coloredc

4 p(alc) = —=
. . . . ec Edges from a
Smoothing term (Dirichlet prior)

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam 42

20241114

Flask

0.7 A
0.6
=
= 054
2
< 0.4
=
T 0.3+
R
0.0 4
T T T T T
UNT BM25 BM25C LDA RAND
0.49 0.16 .15 0.18 018
Prioritization Strategy / Mean
Requests
17.5
15.0 4
%%' 125
E 10.0 4
@
=
2 75
o
z
= 504
254
0.0 —_ —_ J—
T T T T T
UNT BM25 BM25C LDA RAND
13.67 0.94 0.93 1.21 1.21
Prioritization Strategy / Mean
Sphinx
8 -
=
g 07
£
-3
=
£ 49
=
a4
04

T T T T T

UNT BM25 BM25C LDA RAND

211 1.50 L.54 2.66 2.66
Prioritization Strategy / Mean

Faults detected

Faults detected

Fanlts det ected
]
1

3al

300 +

2504

200 4

1304

100 A

a0 4

=== UNT
—— BM25C
=== LDA
----- RAND

T T
0.6 0.8 Lo 1.2
Test suite execution time [seconds]

Requests

3
] f

=== UNT
—— BM2aC
=== LDA
----- RAND

T T T T T T
0.0 2.5 5.0 7.5 10.0 125 15.0
Test suite execution time [seconds]

Sphinx

400

3504

300

2350 4

200 1

150 4

100 4

a0 4

—-— UNT
— BM25C

——- LDA .
----- RAND

https://dl.acm.org/doi/10.11

A5/3328433.3328455

4 6 8
Test suite execution time [seconds]

v

10

43

https://dl.acm.org/doi/10.1145/3328433.3328455

20241

Time to detection |s|

Time to detection |s|

Ilask

3.0 1 —

2.5 1

2.0

1.5 1

1.0 1

05 é [E

0.0 1 Il
UNT BM25BM25CRAND REC PREC FI1
0.62 043 046 057 062 041 047

Prioritization Strategy / Mean
Requests

25

20 A

15

10

!']-

(]- —— —— m— = —_—
UNT BM25BM25CRAND REC PREC FI1
14.26 1.55 1.53 290 2.14 1.41 1.50

Prioritization Strategy / Mean

Faults detected

Faults detected

00/4/12/

I'lask
400 A . e i :=.: T'I_:_,".:..:':'..;xr:l:' =
300 '
200
== UNT
—— BM25C
100 ~ == BM25
""" RAND
=== PREC
0 - 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Test suite exeeution time [seconds|
Requests
60 o e T o Em s Em G em Em s C PR _'
50 4
40 RN
50 - e
== UNT
20 —— BM25C
== BM25b
10 - , I PYPY RAND |
R hitps:Hpregramming-fournalko g0
0 - NP T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Test suite execution time [seconds|

44

https://programming-journal.org/2020/4/12/

2024-11-

1lime to detection |s]

Lime to detection |s|

Sphinx

10 T

8_

b‘-

,1 -

9

0 ==y é ==
UNT BM25 BM25CRAND REC PREC]
211 1.59 154 3.28 3.80 1.55 3.13

Prioritization Strategy / Mean
Jinja

254 -

2.0 1

1.5

1.0 4

- é ‘&[I Q ‘&[I

0.0 1

UNT BM25 BM25CRAND REC PREC I
0.86 025 025 053 027 026 026
Prioritization Strategy / Mean

Faults detected

Faults detected

Sphinx
0
sz T -
300 - i
04 e
200 /
Y,
150 - T S e
’ 4 | -.= UNT
...... ! I aE
][)U _ . ,. BMJI](J
, - —= BM25
50 2 RAND
............. -t === PREC
04 E.---. 1l
0.00 0.25 0.50 0.75 1.00 1.25 .60 1.75 2.00
Test suite exeeution time [seconds)
Jinja
400 1
3504 e T T P
300 - a
25() 1
200 1
]5[) n — IJN'[‘
e BM25C
100 4 == PM25
wd 45 S e RAND
=== PREC
0 - I'1
0.00 .25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Test suite exceution time [seconds|

45

	Default Section
	Slide 1: What can go wrong if I change this line?

	Motivation
	Slide 2: How do we know a Program is “correct”?
	Slide 3: Automated Testing
	Slide 4: Tests and Feedback
	Slide 5: The Test Prioritization Problem
	Slide 6: Main Approaches

	Natural Language in Tests
	Slide 7
	Slide 9

	Lexical RTP
	Slide 11: Term Importance | TF-IDF
	Slide 12: Term Importance | Predictive Value

	AI-based RTP
	Slide 13: Large Language Models
	Slide 14: Large Language Models
	Slide 15: Large Language Models
	Slide 16: Large Language Models
	Slide 17: Large Language Models
	Slide 18: Large Language Models | Test Prioritization
	Slide 19: Large Language Models | Test Prioritization
	Slide 20: Large Language Models | Test Prioritization
	Slide 21: Large Language Models | Test Prioritization
	Slide 22: Large Language Models | Embeddings
	Slide 23: NLP- and AI-based Test Prioritization

	Synthetic Test Failures
	Slide 24: Evaluation | Metrics
	Slide 26: Obtaining Test Failures | Mutation Testing
	Slide 28: Obtaining Test Failures | Change Mutation Testing

	Evaluation
	Slide 29: Results | Example: Flask
	Slide 30: Results | Example: Jinja
	Slide 31: Results | Discussion
	Slide 32: Natural-language based Test Prioritization
	Slide 33: Backup Slides
	Slide 34: Selected Publications
	Slide 35: Conceptual Similarity | Topic Models
	Slide 36: Conceptual Similarity | Topic Models
	Slide 37: Conceptual Similarity | Topic Models
	Slide 38: Conceptual Similarity | Prioritizing with Topics
	Slide 39: Term Importance | Predictive Value
	Slide 40: Evaluation Details
	Slide 41: Bi-term Topic Model for Code
	Slide 42: Fitting a Code Topic Model via Edge Clustering
	Slide 43
	Slide 44
	Slide 45

