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How do we know a Program is “correct”?

Syntax & Semantics e Compiled

Formal Properties @

® Type System

Type-checked

Integrity & Stability

F L -f d Guarantees of OS/Runtime
ormatly ventie A program cannot be .

“correctin isolation,”

Code Quality Guidelines but cons!s.ten’g with a
, specification

o
Code review

User
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Automated Testing

def with tax(country, amount):
Unit under test return amount * ( VAT[country])

def test tax _germany():
result = with tax(countries.DE, 100) (::Z:)

Unit test assert result == 119 o
[ :
Expected outputs and behavior Example inputs and usage

“Specification by example”

“Executable documentation”
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Tests and Feedback

Test feedback helps catch defects early
4 Running many tests delays feedback
Goal: Run relevant tests first.

| X ,|

Flask: 442 Tests, a few minutes

Berlin-based company: 279 Tests, 18h(!) [l

—

[1] Elsner et al. 2021: https://dl.acm.org/doi/abs/10.1145/3460319.3464834
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The Test Prioritization Problem

How do we know which tests are
relevant* to a change?

*) fail if the change introduces a defect (regression)
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Main Approaches Ln

{ Coverage
Prioritize tests that cover code overlapping with the change
'\ { — } by program analysis (ste.atic) or running tests (dyngamic)

() )
} 4 Dynamic languages 4 Becomes outdated

History COCOCO

Prioritize tests that failed previously
Requires plenty of data (for similar changes) @
¥ Requires planty COCOCH
( N [ )
— { {
: word Natural Language
word 1 } T Prioritize tests with vocabulary / concepts
\} ) \. J overlapping with the change
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Natural Language

Programming: “explaining to other programmers (+ your future self)
how to make the computer solve a problem”
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How to compute? What to include?
(similarity of natural language) (context surrounding change)

b b
“Prioritize tests that share vocabulary with the changed code”
R
Which exactly?
(relevance of words)
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Term Importance | TF-IDF IE

Changed lines Test case
R - [T :
def login@pass) | def test correct_password():

if|se1f]check|user,]pass): -

(user J(self])example [user()

self
Term frequency user Term importance
(TF) ) Inverse Document
login Frequency (IDF)
» X
password dot component-wise
product multiplication
All tests
test

Tests with term t
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Term Importance | Predictive Value IE

Weight terms according to how well they predicted previous test
failures (precision)

Terms co-occurring between change and tests

° ) [A A (50%)
B ’__

............ YECECECESES Without history: IDF

With history: Precision

— {

} e )
J B (100%)

Precision = #fails / #tests in which a term co-
occurs with a change (replaces IDF in TF-IDF)
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Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

—— o —— oy,

(def Xhe110) _wor1d) O XQn XA ) print &:eeees Generation
|\ " .
N .

Select next token

Language Model
>
Vocabulary
P(t |t 1o return >
(tnltn-1, -, t1) C ) All known tokens

é .

o o .

Often GPT Architecture . . -

Generative pre-trained J
transformer Next token probabilities

2024-11-14 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

13



Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

Cdefﬁlellcbc_worldX( )U\n X\t Xpr‘int )\’:(__:K.E

Language Model @
P(tnltn—lr ""tl) @
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Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

Cdefﬁlellcbc_worldX( )U\n X\t Xpr'int X( ):f‘::,‘(-;

Language Model @ .............. :
P(tnltn—lr e tl) @
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Large Language Models

def hello world(): | Input (Prompt)

; Tokenization

Language Model

P(tnltn-1, -, t1)
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Large Language Models

def hello world(): | Input (Prompt)

; Tokenization
Cdefﬁlellcbc_worldX( )U\n X\tXprint X( X“ ) XX
\ - ~~ _J _J
S
P(tnltn—lr 200 ] tl)
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Large Language Models | Test Prioritization IE

¢ Instead of generating code, let the LLM output the probability of
existing code
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Large Language Models | Test Prioritization

p( Existing Code ) =P1 X ..X Py
Pretend we’re generating it

p

Di n
Cdefﬁlellcbc_worldX( )U\n X\t Xr'etur*nHHello X wor'ld

Language Model .
Lookup probability p;

of each existing token t;

P(tnltn-1, -, t1)
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Large Language Models | Test Prioritization IE

Instead of generating tests, let the LLM output the probability of
existing tests in response to a change. Run most probable test first.

P (Test| Change) ~ P X ... X Pp

(Change XTest CD
|

\. probabilities
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Large Language Models | Test Prioritization IE

=" Format a prompt and append each test, scoring its probability
" Comment out deleted code
= Retain lexical scope

class AClass: # /src/the_file.py
class AClass:

def init (self):

"""""" > def method(self):
# return self.value
def method(self): return self.value + 1
- return self.value
+ return self.value + 1 # Test validating this change:
Change LLM Prompt
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Large Language Models | Embeddings IE

Vectors for (textual) data so that the proximity of two vectors
measures the semantic similarity of their associated data

def foo():

sim(a; b) =
S
A def foo(): ..

\u J . !

Y : ..":.

Encoder i -
(Bi-directional Transformer) .»,
def bar(): ..
1 : def test foo(): ..
® o

def test bar(): ..
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NLP- and Al-based Test Prioritization E

Order tests so that ... run first

1. TF-IDF: Tests with (important) terms shared with changed code

2.
3. LLM: Tests most likely generated to test a change
4. Embedding: Tests semantically related to a change

But which one is the best?
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Fvaluation | Metrics IE

=" Performance: average percentage
of faults detected (APFD)

= Computes the area under the curve au
that plots the percentage of :aut: @®@®@
uncovered faults so far (y-axis) over @@@@@
the percentage of already executed rauits @@@@

tests (x-axis)

Percentage
of Faults

Test Suite Progress
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Obtaining Test Failures | Mutation Testing Ln

Mutants n=n+1 n=n-1
(" h 4 h if logged in: if not logged in:
T { _ { HTTPError(404) HTTPError(405)
— || ¥ — 1 Defect config[“key”] config[“”]
. 1) e
7 ~\ Run tests per mutant

Code

— 1

= | 7 COCEOCECOCOC O E

. J
(— { \ 4 No realistic changes, defects, and test results
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Obtaining Test Failures | Change Mutation Testing Ln

Version n Diff Version n+1
Repeat for many versions (Git commits)

4 ) 4 )
— P of — |1 O OO K
+ —
} —— } Controlrun
- J _ \ J
: Mutation - N
v
— {
— — | O ECEX
} == Synthetic failures
\_ Y,
Faulty diff ~

Fault distribution follows real changes
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Results | Example: Flask

Surprise: TF-IDF (a very simple algorithm) sometimes beats Al

Fault detection (flask)

1.0 A L
-O . A:’-;-}-A ----------
) -
't; 08 7 _;.',-
8 —_ "_..-.._.._.:'.
[} _,.f’
-o I
8 -
S 0.6 -
L N 1 | Y
L Y
g 0.4 - — |Im (APFD = 0.890)
5 —— embed (APFD = 0.923)
O —— embed (whole) (APFD = 0.922)
2 0.2 1 —— bm25 (APFD = 0.931) TE-IDF
=== rand (APFD = 0./709Y)
----- default (APFD = 0.629)
0-0 : 1 1 1 1 1
0 100 200 300 400 500
Number of tests executed
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Results | Example: Jinja

In most larger projects, an embedding-based test ordering is best

Fault detection (jinja)

1.0 -
©
Q
0 0.8 -
3
()
©
]
S 0.6
O
L|6 :--
304 ; T — |Im (APFD = 0.874)
£ L —— embed (APFD = 0.934) Embedding
g g —— embed (whole) (APFD = 0.896)
9 0.2 —— bm?25 (APFD = 0.863)
—== rand (APFD = 0.817)
------ default (APFD = 0.750)
0.0 -

0 200 400 600 800
Number of tests executed
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Results | Discussion

= | | Ms are “too nuanced” and currently too expensive
= Penalize tests for bad practices (“Wouldn’t have written such test”)
= Overhead: 10 - 20 ms GPU time > execution time of average unit test

= Often simple heuristics (e.g. TF-IDF) are competitive

= Limitations and Next steps
= Models only pre-trained: Fine-tune LLM and embedding models on tests
= Synthetic data: Run the experiments on real historical data
= Additional features (e.g., commit messages)
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Natural-language based Test Prioritization

Term Importance | TF-IDF

Changed lines Testcase
f :
def login{user,]pass): daf tes rrect_password():
s# (et check{ser) pass): (558 3 (eI} exomple [ser)
m— ' L
............... ;
self
Term frequency user Term importance
(TF) ) Inverse Document
login ° x Frequency (IDF)
password dot component-wise
product muliplcation /N Attests
Io; 7} e
test g(nr

20241194 Mattis, Hirschfeld | NLP & Al Test Prioritization | Software Architecture Group | HPI Potsdam

Large Language Models | Embeddings

Vectors for (textual) data so that the proximity of two vectors
measures the semantic similarity of their associated data

def foo():

sim(a;b) =
D00 S
def foo(): ..
Encoder :
[ Rd ]
def bar(): ..
H def test_foo():
® .

def test bar(): ..

3|

Tests with term t

2024-0312 Matis, Bohme, Krebs, Rinard, Hirschfeld | Faster Feedback with A7 | Software Architecture Group

Large Language Models | Test Prioritization Ln

Instead of generating tests, let the LLM output the probability of
existing tests in response to a change. Run most probable test first.

P (Test| Change) ~

(Change
LLM QO mmm
probabilities
2024114 Mattis, Hirschfeld | NLP & Al Test Prioritzation | Software Architecture Group | HPI Potsdam 20

Obtaining Test Failures | Change Mutation Testing E

Versionn Diff

Version n+1 1
Repeat for many versions {Git commits)

wofr COOXCOCOC®

Control run

M

- COCOCECO

Synthetic failures

Faulty diff

Fault distribution follows real changes
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Results | Example: Jinja Lﬂ

In most larger projects, an embedding-based test ordering is best

Fault detection (jinja)

o

e
By

e
S

Percentage of faults detected

04 —— Iim (APFD = 0.874)
Embedding
024 F —— bm25 (APFD = 0.863)
== rand (APFD = 0.817)
+ default (APFD = 0.750)
0.0
0 200 400 600 800
Number of tests executed
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Conceptual Similarity | Topic Models

frequency

Distributional hypothesis: Terms that are present or absent together
refer to a similar concept (topic)
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Conceptual Similarity | Topic Models

4 p
— {
}

. J

frequency

-
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Topic 2

http
error

post

Topic 3

title

date

||'
\,ﬁ

=

Topic 1
Topic 2

Topic 3

Topic 1
Topic 2

Topic 3
Topic 1
Topic 2
Topic 3
Topic 1
Topic 2
Topic 3
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Conceptual Similarity | Prioritizing with Topics

Changed lines Test case

def login(user, pass): def test correct password():
if self.check(user, pass): .. user = self.example user()

v v
Topic 1
4...
Topic 2 »
%3965822 dot %zgq&)t—n\n\u
g ;G;J 9 g 5»0 85 % T0p|03 product Jq:_) E) 9 03) Term Importance | TF-IDF IE
(@) o (@)
(@)
— N (40}
(@) . .
s = 5 4 Synonyms, abbreviations,
o o .
= = abstractions, ...
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Term Importance | Predictive Value

Use terms that predicted past test failures

Changed lines

if user.check(pass):

raise HTTPError(403)

Future change:

if user is None:
raise HTTPError(403)

20241114

user error
http http

> (L
> (L (_CF)

user
pass

user user  error
http pass  http
2nd 3rd
user(90.5) user(0.5)
http(9.5) pass
= 1.0 = 0.5

user 2 1 50%
pass 1 1 100%
error 1 1 100%

http 2 1 50%

o - o

o
Ch O & N
Q . PO o)
) 2 Q@

error(1.0)
http (0.5) %
= 1.5
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Evaluation Details Ln

Dataset: Python projects

= Well-tested
= Tests must run reproducibly many versions into the past (~10 years)
= Only include tests that pass an (un-mutated) control run

Commits | Tests LOC
(Param.) Changed

Flask 390 (442) 12.5
Requests 43 314 (557) 188 13.8
Jinja 68 655 (829) 420 15.2

LLM-Based experiments:
= Performed on NVidia RTX 4090 (24GB GPU Memory)

= Models: Codellama-7B (initial), StableCode-3B (in the paper),
CodeGemma-1.1-2b (now)
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Bi-term Topic Model for Code Lﬂ

= Traditional topic models (e.g., LDA) designed for documents

=" Code has a smaller vocabulary than natural language documents,
less redundancy, and a hierarchy/graph-like structure (no
apparent document boundaries)

( \ Syntax Tree
TR ey ©
— Probability of names Probability of names
. co-occurring belonging to concept/topic ¢
}
\. J/ v v v
Co-occurrence relation P(a, b|C) = p(alc)p(blc)
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Fitting a Code Topic Model via Edge Clustering

Co-occurrence
relations:

A, Multigraph
(many edges per
pair of nodes)

1. Randomly color edges 2. Re-sample edge color 3. Assign color,
from adjacent edges repeat 2. & 3. for each edge
\ )
Y

(1 4+« Iterate until
¢ = ' Convergence. Then:

Gibbs sampling 2+ 2a
(Monte Carlo p(cla,b) = 5 2+ a Topics = colors
Cc =
methOd) \2 + 2 ' Edges from a

a,c coloredc

4 p(alc) = —=
. . . . ec Edges from a
Smoothing term (Dirichlet prior)
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Time to detection |s|

Ilask

3.0 1 —

2.5 1

2.0

1.5 1

1.0 1

05 é [E

0.0 1 Il
UNT BM25BM25CRAND REC PREC FI1
0.62 043 046 057 062 041 047

Prioritization Strategy / Mean
Requests

25

20 A

15

10

!']-

(]- —— —— m— = —_—
UNT BM25BM25CRAND REC PREC FI1
14.26 1.55 1.53 290 2.14 1.41 1.50

Prioritization Strategy / Mean

Faults detected

Faults detected

00/4/12/

I'lask
400 A . e i :=.: T'I_:_,".:..:':'..;xr:l:' ....... =
300 '
200
== UNT
—— BM25C
100 ~ == BM25
""" RAND
=== PREC
0 - 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Test suite exeeution time [seconds|
Requests
60 o e T o  Em s Em G em Em s C PR _'
50 4
40 RN
50 - e
== UNT
20 —— BM25C
== BM25b
10 - , I PYPY RAND |
R hitps:Hpregramming-fournalko g0
0 - NP T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Test suite execution time [seconds|

44


https://programming-journal.org/2020/4/12/

2024-11-

1lime to detection |s]

Lime to detection |s|

Sphinx

10 T

8_

b‘-

,1 -

9

0 ==y é ==
UNT BM25 BM25CRAND REC PREC ]
211 1.59 154 3.28 3.80 1.55 3.13

Prioritization Strategy / Mean
Jinja

254 -

2.0 1

1.5

1.0 4

- é ‘&[I Q ‘&[I

0.0 1

UNT BM25 BM25CRAND REC PREC I
0.86 025 025 053 027 026 026
Prioritization Strategy / Mean

Faults detected

Faults detected

Sphinx
0
sz T -
300 - i
04 e
200 /
Y,
150 - T S e
’ 4 | -.= UNT
...... ! I aE
][)U _ . ,. BMJI](J
, - —= BM25
50 2 RAND
............. -t === PREC
04 E.---. 1l
0.00 0.25 0.50 0.75 1.00 1.25 .60 1.75 2.00
Test suite exeeution time [seconds)
Jinja
400 1
3504 e T T P
300 - a
25() 1
200 1
]5[) n — IJN'[‘
e BM25C
100 4 == PM25
wd 45 S e RAND
=== PREC
0 - I'1
0.00 .25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Test suite exceution time [seconds|

45



	Default Section
	Slide 1: What can go wrong if I change this line?

	Motivation
	Slide 2: How do we know a Program is “correct”?
	Slide 3: Automated Testing
	Slide 4: Tests and Feedback
	Slide 5: The Test Prioritization Problem
	Slide 6: Main Approaches

	Natural Language in Tests
	Slide 7
	Slide 9

	Lexical RTP
	Slide 11: Term Importance | TF-IDF
	Slide 12: Term Importance | Predictive Value

	AI-based RTP
	Slide 13: Large Language Models
	Slide 14: Large Language Models
	Slide 15: Large Language Models
	Slide 16: Large Language Models
	Slide 17: Large Language Models
	Slide 18: Large Language Models | Test Prioritization
	Slide 19: Large Language Models | Test Prioritization
	Slide 20: Large Language Models | Test Prioritization
	Slide 21: Large Language Models | Test Prioritization
	Slide 22: Large Language Models | Embeddings
	Slide 23: NLP- and AI-based Test Prioritization

	Synthetic Test Failures
	Slide 24: Evaluation | Metrics
	Slide 26: Obtaining Test Failures | Mutation Testing
	Slide 28: Obtaining Test Failures | Change Mutation Testing

	Evaluation
	Slide 29: Results | Example: Flask
	Slide 30: Results | Example: Jinja
	Slide 31: Results | Discussion
	Slide 32: Natural-language based Test Prioritization
	Slide 33: Backup Slides
	Slide 34: Selected Publications
	Slide 35: Conceptual Similarity | Topic Models
	Slide 36: Conceptual Similarity | Topic Models
	Slide 37: Conceptual Similarity | Topic Models
	Slide 38: Conceptual Similarity | Prioritizing with Topics
	Slide 39: Term Importance | Predictive Value
	Slide 40: Evaluation Details
	Slide 41: Bi-term Topic Model for Code
	Slide 42: Fitting a Code Topic Model via Edge Clustering
	Slide 43
	Slide 44
	Slide 45


