
What can go wrong if I change this line?
Test Failure Prediction Using Natural Language and AI

Toni Mattis
Robert Hirschfeld

Potsdam | 14. Nov. 2024

Software Architecture Group
HPI, University of Potsdam, Germany

How do we know a Program is “correct”?

A program cannot be
“correct in isolation,”
but consistent with a

specification

Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 2

Compiled

Does not crash

Type-checked

Passes unit tests

Formally verified

Code review

User satisfied
User
Expectations

Type System
Syntax & Semantics

Examples

Formal Properties

Code Quality Guidelines

Integrity & Stability
Guarantees of OS/Runtime

2024-11-14

Automated Testing

Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 3

def with_tax(country, amount):
 return amount * (1 + VAT[country])

def test_tax_germany():
 result = with_tax(countries.DE, 100)
 assert result == 119

2024-11-14

Example inputs and usageExpected outputs and behavior

“Executable documentation”

“Specification by example”

Unit test

Unit under test

F

Tests and Feedback

 Test feedback helps catch defects early
 Running many tests delays feedback

Goal: Run relevant tests first.

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 4

Flask: 442 Tests, a few minutes
Berlin-based company: 279 Tests, 18h(!) [1]

[1] Elsner et al. 2021: https://dl.acm.org/doi/abs/10.1145/3460319.3464834

{

}

F

F

https://github.com/pallets/flask/tree/main/tests
https://dl.acm.org/doi/abs/10.1145/3460319.3464834

The Test Prioritization Problem

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 5

F

How do we know which tests are
relevant* to a change?

{

}

*) fail if the change introduces a defect (regression)

Main Approaches

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 6

{

}

Coverage
Prioritize tests that cover code overlapping with the change
by program analysis (static) or running tests (dynamic)

F

F

FFHistory
Prioritize tests that failed previously

(for similar changes)

{

}

{

}
word

word Natural Language
Prioritize tests with vocabulary / concepts
overlapping with the change

Becomes outdatedDynamic languages

Requires plenty of data

Programming: “explaining to other programmers (+ your future self)
how to make the computer solve a problem”

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 7

Natural Language

“Prioritize tests that share vocabulary with the changed code”

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 9

How to compute?
(similarity of natural language)

Which exactly?
(relevance of words)

What to include?
(context surrounding change)

Term Importance | TF-IDF

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 11

def login(user, pass):
 if self.check(user, pass): …

def test_correct_password():
 user = self.example_user()
…

Term importance
Inverse Document
Frequency (IDF)×

self

user

login

password

test

Term frequency
(TF)

Changed lines Test case

component-wise
multiplication

dot
product

log
𝑁

𝑛𝑡

All tests

Tests with term t

Term Importance | Predictive Value

Weight terms according to how well they predicted previous test
failures (precision)

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 12

F F

{

}

A
B

A

B

Terms co-occurring between change and tests

Precision = #fails / #tests in which a term co-
occurs with a change (replaces IDF in TF-IDF)

log
𝑁

𝑛𝑡

All tests

Tests with term t

(50%)

(100%)

Without history: IDF
With history: Precision

Large Language Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 13

def hello_world():

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

print

“

return

…
Next token probabilities

…

Vocabulary
All known tokens

printdef hello _world () : \n \t

Tokenization

Generation
Select next token

Input (Prompt)

Often GPT Architecture
Generative pre-trained
transformer

Large Language Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 14

def hello_world():

def hello _world () : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

(

“

_

print

Tokenization

Input (Prompt)

(

Large Language Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 15

def hello_world():

def hello _world () : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

“

\n

‘

print

Tokenization

Input (Prompt)

(“

Large Language Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 16

def hello_world():

def hello _world () : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

hello

Hallo

Hello

print

Tokenization

Input (Prompt)

(“ hello

Large Language Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 17

def hello_world():

def hello _world () : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

<eos>

\n\n

\n

print

Tokenization

Input (Prompt)

(“ … <eos>

End of Sequence Token
Terminates generation

Large Language Models | Test Prioritization

Instead of generating code, let the LLM output the probability of
existing code

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 18

Large Language Models | Test Prioritization

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 19

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

print

“

return

……

returndef hello _world () : \n \t

Lookup probability 𝑝𝑖

of each existing token 𝑡𝑖

“ Hello world “ <eos>\n

Existing Code
Pretend we’re generating it

𝑝𝑖 𝑝𝑛

𝑝𝑖

𝑝() = 𝑝1 × … × 𝑝𝑛

Large Language Models | Test Prioritization

Instead of generating tests, let the LLM output the probability of
existing tests in response to a change. Run most probable test first.

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 20

Change Test

LLM

probabilities

p1 × … × pn

pi

P (Test | Change) ~

▪ Format a prompt and append each test, scoring its probability
▪ Comment out deleted code
▪ Retain lexical scope

Large Language Models | Test Prioritization

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 21

/src/the_file.py
class AClass:

 def method(self):
 # return self.value
 return self.value + 1

Test validating this change:

class AClass:

 def __init__(self):
 …

 def method(self):
- return self.value
+ return self.value + 1

Change LLM Prompt

Large Language Models | Embeddings

Vectors for (textual) data so that the proximity of two vectors
measures the semantic similarity of their associated data

2024-03-12 Mattis, Böhme, Krebs, Rinard, Hirschfeld | Faster Feedback with AI? | Software Architecture Group 22

def foo(): …

def bar(): …

def test_foo(): …

def test_bar(): …

def foo():

Encoder
(Bi-directional Transformer)

def foo () :

sim a; b =
cos 𝛼 = 𝑎 ⋅ 𝑏

𝛼

NLP- and AI-based Test Prioritization

Order tests so that … run first

1. TF-IDF: Tests with (important) terms shared with changed code
2. Topic Model: Tests concerned with a similar set of topics
3. LLM: Tests most likely generated to test a change
4. Embedding: Tests semantically related to a change

But which one is the best?

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 23

Evaluation | Metrics

▪ Performance: average percentage
of faults detected (APFD)

▪ Computes the area under the curve
that plots the percentage of
uncovered faults so far (y-axis) over
the percentage of already executed
tests (x-axis)

242024-03-12 Mattis, Böhme, Krebs, Rinard, Hirschfeld | Faster Feedback with AI? | Software Architecture Group

F F

F F

F

Fault 1

Fault 2

Fault 3

APFD

Test Suite Progress

Pe
rc

en
ta

ge
of

 F
au

lts

Obtaining Test Failures | Mutation Testing

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 26

{

}

{

}

{

}

{

Code

Mutants

Defect

n = n + 1 n = n - 1

if logged_in: if not logged_in:

HTTPError(404) HTTPError(405)

config[“key”] config[“”]

F

F F F

Run tests per mutant

No realistic changes, defects, and test results

Obtaining Test Failures | Change Mutation Testing

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 28

{

}

{

}

+
+
-

Version n+1Version n Diff

+
+
-

{

}

Faulty diff

Mutation

F F

Control run

Synthetic failures

 Fault distribution follows real changes

Repeat for many versions (Git commits)

Results | Example: Flask

Surprise: TF-IDF (a very simple algorithm) sometimes beats AI

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 29

TF-IDF

Results | Example: Jinja

In most larger projects, an embedding-based test ordering is best

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 30

Embedding

Results | Discussion

▪ LLMs are “too nuanced” and currently too expensive
▪ Penalize tests for bad practices (“Wouldn’t have written such test”)
▪ Overhead: 10 – 20 ms GPU time > execution time of average unit test

▪ Often simple heuristics (e.g. TF-IDF) are competitive

▪ Limitations and Next steps
▪ Models only pre-trained: Fine-tune LLM and embedding models on tests
▪ Synthetic data: Run the experiments on real historical data
▪ Additional features (e.g., commit messages)

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 31

Natural-language based Test Prioritization

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 32

Contact:

 toni.mattis@hpi.de

 https://toni.mattis.berlin

mailto:toni.mattis@hpi.de
https://toni.mattis.berlin/

Backup Slides

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 33

Selected Publications

1. T. Mattis, L. Böhme, E. Krebs, M. Rinard, R. Hirschfeld, Faster
Feedback with AI? - A Test Prioritization Study, Programming with AI
(PAI/24), Lund, Sweden, Mar. 2024

2. T. Mattis, P. Rein, F. Dürsch, and R. Hirschfeld, RTPTorrent: An Open-
source Dataset for Evaluating Regression Test Prioritization, 17th

International Conference on Mining Software Repositories (MSR),
Seoul, South Korea, May 2020

3. T. Mattis and R. Hirschfeld, Lightweight Lexical Test Prioritization for
Immediate Feedback, The Art, Science, and Engineering of
Programming, Vol. 4, Nr. 3.

4. D. Meier, T. Mattis, and R. Hirschfeld, Toward Exploratory
Understanding of Software Using Test Suites, Programming
Experience (PX/21), Cambridge, UK, Mar. 2021

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 34

https://dl.acm.org/doi/abs/10.1145/3660829.3660837
https://dl.acm.org/doi/abs/10.1145/3660829.3660837
https://dl.acm.org/doi/abs/10.1145/3660829.3660837
https://dl.acm.org/doi/10.1145/3379597.3387458
https://dl.acm.org/doi/10.1145/3379597.3387458
https://dl.acm.org/doi/10.1145/3379597.3387458
https://dl.acm.org/doi/10.1145/3379597.3387458
https://programming-journal.org/2020/4/12/
https://programming-journal.org/2020/4/12/
https://programming-journal.org/2020/4/12/
https://dl.acm.org/doi/abs/10.1145/3464432.3464438
https://dl.acm.org/doi/abs/10.1145/3464432.3464438
https://dl.acm.org/doi/abs/10.1145/3464432.3464438

Conceptual Similarity | Topic Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 35

{

}

{

}

{

}

{

}

{

}

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

fr
eq

ue
nc

y

Conceptual Similarity | Topic Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 36

{

}

{

}

{

}

{

}

{

}

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

fr
eq

ue
nc

y

Distributional hypothesis: Terms that are present or absent together
refer to a similar concept (topic)

Conceptual Similarity | Topic Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 37

{

}

{

}

{

}

{

}

{

}

fr
eq

ue
nc

y

us
er

na
m

e
em

ai
l

ht
tp

er
ro

r
po

st
tit

le
da

te

To
pi

c
1

To
pi

c
2

To
pi

c
3

To
pi

c
1

To
pi

c
2

To
pi

c
3

To
pi

c
1

To
pi

c
2

To
pi

c
3

To
pi

c
1

To
pi

c
2

To
pi

c
3

To
pi

c
1

To
pi

c
2

To
pi

c
3

Conceptual Similarity | Prioritizing with Topics

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 38

def login(user, pass):
 if self.check(user, pass): …

def test_correct_password():
 user = self.example_user()
…

Topic 1

Topic 2

Topic 3

Changed lines Test case

dot
product

ch
ec

k
ve

rif
y

ro
le

us
er

lo
gi

n
pa

ss
tit

le
co

nt
en

t

ch
ec

k
ve

rif
y

ro
le

us
er

lo
gi

n
pa

ss
tit

le
co

nt
en

t

To
pi

c
1

To
pi

c
2

To
pi

c
3

 Synonyms, abbreviations,
abstractions, …

Term Importance | Predictive Value

Use terms that predicted past test failures

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam

39

F

F

user
http

user
pass

error
http

if user.check(pass):

raise HTTPError(403)

user
http

user
pass

error
http

user 2 1 50%

pass 1 1 100%

error 1 1 100%

http 2 1 50%

Changed lines

if user is None:
 raise HTTPError(403)

user(0.5)
http(0.5)
= 1.0

user(0.5)
pass
= 0.5

error(1.0)
http (0.5)
= 1.5

? ? ?

1st 2nd 3rd Future change:

-

+
+

+

Evaluation Details

Dataset: Python projects
▪ Well-tested
▪ Tests must run reproducibly many versions into the past (~10 years)
▪ Only include tests that pass an (un-mutated) control run

LLM-Based experiments:
▪ Performed on NVidia RTX 4090 (24GB GPU Memory)
▪ Models: CodeLlama-7B (initial), StableCode-3B (in the paper),

CodeGemma-1.1-2b (now)

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 40

Commits Tests
(Param.)

Faults LOC
Changed

Flask 159 390 (442) 726 12.5

Requests 43 314 (557) 188 13.8

Jinja 68 655 (829) 420 15.2

Bi-term Topic Model for Code

▪ Traditional topic models (e.g., LDA) designed for documents
▪ Code has a smaller vocabulary than natural language documents,

less redundancy, and a hierarchy/graph-like structure (no
apparent document boundaries)

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 41

{

} a b

Co-occurrence relation

Syntax Tree

𝑃 𝑎, 𝑏|𝑐 = 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐

Probability of names
co-occurring

Probability of names
belonging to concept/topic c

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

Fitting a Code Topic Model via Edge Clustering

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 42

a b a b

1. Randomly color edges 2. Re-sample edge color
from adjacent edges

𝑝 𝑐|𝑎, 𝑏 =

1 + 𝛼

2 + 2𝛼
2 + 𝛼

2 + 2𝛼

𝑐 =

𝑐 =

Smoothing term (Dirichlet prior)

a b

3. Assign color,
repeat 2. & 3. for each edge

Iterate until
Convergence. Then:
Topics = colors

𝑝 𝑎 𝑐 =
𝑒𝑎,𝑐

𝑒𝑐

Co-occurrence
relations:

Gibbs sampling
(Monte Carlo

method)

 Multigraph
(many edges per
pair of nodes)

Edges from a
colored c

Edges from a

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 43

https://dl.acm.org/doi/10.1145/3328433.3328455

https://dl.acm.org/doi/10.1145/3328433.3328455

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 44

https://programming-journal.org/2020/4/12/

https://programming-journal.org/2020/4/12/

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 45

	Default Section
	Slide 1: What can go wrong if I change this line?

	Motivation
	Slide 2: How do we know a Program is “correct”?
	Slide 3: Automated Testing
	Slide 4: Tests and Feedback
	Slide 5: The Test Prioritization Problem
	Slide 6: Main Approaches

	Natural Language in Tests
	Slide 7
	Slide 9

	Lexical RTP
	Slide 11: Term Importance | TF-IDF
	Slide 12: Term Importance | Predictive Value

	AI-based RTP
	Slide 13: Large Language Models
	Slide 14: Large Language Models
	Slide 15: Large Language Models
	Slide 16: Large Language Models
	Slide 17: Large Language Models
	Slide 18: Large Language Models | Test Prioritization
	Slide 19: Large Language Models | Test Prioritization
	Slide 20: Large Language Models | Test Prioritization
	Slide 21: Large Language Models | Test Prioritization
	Slide 22: Large Language Models | Embeddings
	Slide 23: NLP- and AI-based Test Prioritization

	Synthetic Test Failures
	Slide 24: Evaluation | Metrics
	Slide 26: Obtaining Test Failures | Mutation Testing
	Slide 28: Obtaining Test Failures | Change Mutation Testing

	Evaluation
	Slide 29: Results | Example: Flask
	Slide 30: Results | Example: Jinja
	Slide 31: Results | Discussion
	Slide 32: Natural-language based Test Prioritization
	Slide 33: Backup Slides
	Slide 34: Selected Publications
	Slide 35: Conceptual Similarity | Topic Models
	Slide 36: Conceptual Similarity | Topic Models
	Slide 37: Conceptual Similarity | Topic Models
	Slide 38: Conceptual Similarity | Prioritizing with Topics
	Slide 39: Term Importance | Predictive Value
	Slide 40: Evaluation Details
	Slide 41: Bi-term Topic Model for Code
	Slide 42: Fitting a Code Topic Model via Edge Clustering
	Slide 43
	Slide 44
	Slide 45

