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How do we know a Program is “correct”?

A program cannot be
“correct in isolation,” 
but consistent with a 

specification
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Compiled

Does not crash

Type-checked

Passes unit tests

Formally verified

Code review

User satisfied
User
Expectations

Type System
Syntax & Semantics

Examples

Formal Properties

Code Quality Guidelines

Integrity & Stability
Guarantees of OS/Runtime
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Automated Testing
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def with_tax(country, amount):
    return amount * (1 + VAT[country])

def test_tax_germany():
    result = with_tax(countries.DE, 100)
    assert result == 119

2024-11-14

Example inputs and usageExpected outputs and behavior

“Executable documentation”

“Specification by example”

Unit test

Unit under test

F



Tests and Feedback

 Test feedback helps catch defects early
 Running many tests delays feedback

Goal: Run relevant tests first.
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Flask: 442 Tests, a few minutes
Berlin-based company: 279 Tests, 18h(!) [1]

[1] Elsner et al. 2021: https://dl.acm.org/doi/abs/10.1145/3460319.3464834

{

}

F

F

https://github.com/pallets/flask/tree/main/tests
https://dl.acm.org/doi/abs/10.1145/3460319.3464834


The Test Prioritization Problem
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F

How do we know which tests are 
relevant* to a change?

{

}

*) fail if the change introduces a defect (regression)



Main Approaches
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{

}

Coverage
Prioritize tests that cover code overlapping with the change
by program analysis (static) or running tests (dynamic)

F

F

FFHistory
Prioritize tests that failed previously

(for similar changes)

{

}

{

}
word

word Natural Language
Prioritize tests with vocabulary / concepts 
overlapping with the change

Becomes outdatedDynamic languages

Requires plenty of data



Programming: “explaining to other programmers (+ your future self) 
how to make the computer solve a problem”
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Natural Language



“Prioritize tests that share vocabulary with the changed code”
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How to compute?
(similarity of natural language)

Which exactly?
(relevance of words)

What to include?
(context surrounding change)



Term Importance | TF-IDF
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def login(user, pass):
    if self.check(user, pass): …

def test_correct_password():
    user = self.example_user()
…

Term importance
Inverse Document 
Frequency (IDF)×

self

user

login

password

test

Term frequency
(TF)

Changed lines Test case

component-wise
multiplication

dot
product

log
𝑁

𝑛𝑡

All tests

Tests with term t



Term Importance | Predictive Value

Weight terms according to how well they predicted previous test 
failures (precision)
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F F

{

}

A
B

A

B

Terms co-occurring between change and tests

Precision = #fails / #tests in which a term co-
occurs  with a change (replaces IDF in TF-IDF)

log
𝑁

𝑛𝑡

All tests

Tests with term t

(50%)

(100%)

Without history: IDF
With history: Precision



Large Language Models
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def hello_world():

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

print

“

return

…
Next token probabilities

…

Vocabulary
All known tokens

printdef  hello  _world  ()  : \n \t

Tokenization

Generation
Select next token

Input (Prompt)

Often GPT Architecture
Generative pre-trained 
transformer



Large Language Models
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def hello_world():

def  hello  _world  ()  : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

(

“

_

print

Tokenization

Input (Prompt)

(



Large Language Models
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def hello_world():

def  hello  _world  ()  : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

“

\n

‘

print

Tokenization

Input (Prompt)

( “



Large Language Models

2024-11-14 Mattis, Hirschfeld | NLP & AI Test Prioritization | Software Architecture Group | HPI Potsdam 16

def hello_world():

def  hello  _world  ()  : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

hello

Hallo

Hello

print

Tokenization

Input (Prompt)

( “ hello



Large Language Models
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def hello_world():

def  hello  _world  ()  : \n \t

Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

<eos>

\n\n

\n

print

Tokenization

Input (Prompt)

( “ … <eos>

End of Sequence Token
Terminates generation



Large Language Models | Test Prioritization

Instead of generating code, let the LLM output the probability of 
existing code
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Large Language Models | Test Prioritization
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Language Model

𝑃(𝑡𝑛|𝑡𝑛−1, … , 𝑡1)

print

“

return

……

returndef  hello  _world  ()  : \n \t

Lookup probability 𝑝𝑖

of each existing token 𝑡𝑖

“ Hello world “ <eos>\n

Existing Code
Pretend we’re generating it

𝑝𝑖 𝑝𝑛

𝑝𝑖

𝑝( ) = 𝑝1 ×  … × 𝑝𝑛



Large Language Models | Test Prioritization

Instead of generating tests, let the LLM output the probability of 
existing tests in response to a change. Run most probable test first.
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Change Test

LLM

probabilities

p1 × …           × pn 

pi

P ( Test | Change )  ~ 



▪ Format a prompt and append each test, scoring its probability
▪ Comment out deleted code
▪ Retain lexical scope

Large Language Models | Test Prioritization
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# /src/the_file.py
class AClass:

    def method(self):
        # return self.value
        return self.value + 1

# Test validating this change:

class AClass:

    def __init__(self):
        …

    def method(self):
-       return self.value
+       return self.value + 1

Change LLM Prompt



Large Language Models | Embeddings

Vectors for (textual) data so that the proximity of two vectors 
measures the semantic similarity of their associated data

2024-03-12 Mattis, Böhme, Krebs, Rinard, Hirschfeld | Faster Feedback with AI? | Software Architecture Group 22

def foo(): …

def bar(): …

def test_foo(): …

def test_bar(): …

def foo():

Encoder
(Bi-directional Transformer)

def foo () : 

sim a; b =
cos 𝛼 = 𝑎 ⋅ 𝑏

𝛼



NLP- and AI-based Test Prioritization

Order tests so that … run first

1. TF-IDF: Tests with (important) terms shared with changed code
2. Topic Model: Tests concerned with a similar set of topics
3. LLM: Tests most likely generated to test a change
4. Embedding: Tests semantically related to a change

But which one is the best?
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Evaluation | Metrics

▪ Performance: average percentage 
of faults detected (APFD)

▪ Computes the area under the curve 
that plots the percentage of 
uncovered faults so far (y-axis) over 
the percentage of already executed 
tests (x-axis)

242024-03-12 Mattis, Böhme, Krebs, Rinard, Hirschfeld | Faster Feedback with AI? | Software Architecture Group

F F

F F

F

Fault 1

Fault 2

Fault 3

APFD
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Obtaining Test Failures | Mutation Testing
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{

}

{

}

{

}

{

Code

Mutants

Defect

n = n + 1 n = n - 1

if logged_in: if not logged_in:

HTTPError(404) HTTPError(405)

config[“key”] config[“”]

F

F F F

Run tests per mutant

No realistic changes, defects, and test results



Obtaining Test Failures | Change Mutation Testing
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{

}

{

}

+
+
-

Version n+1Version n Diff

+
+
-

{

}

Faulty diff

Mutation

F F

Control run

Synthetic failures

 Fault distribution follows real changes

Repeat for many versions (Git commits)



Results | Example: Flask

Surprise: TF-IDF (a very simple algorithm) sometimes beats AI
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TF-IDF



Results | Example: Jinja

In most larger projects, an embedding-based test ordering is best
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Embedding



Results | Discussion

▪ LLMs are “too nuanced” and currently too expensive
▪ Penalize tests for bad practices (“Wouldn’t have written such test”)
▪ Overhead: 10 – 20 ms GPU time > execution time of average unit test

▪ Often simple heuristics (e.g. TF-IDF) are competitive

▪ Limitations and Next steps
▪ Models only pre-trained: Fine-tune LLM and embedding models on tests
▪ Synthetic data: Run the experiments on real historical data
▪ Additional features (e.g., commit messages)
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Natural-language based Test Prioritization
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Contact:

  toni.mattis@hpi.de

  https://toni.mattis.berlin 

mailto:toni.mattis@hpi.de
https://toni.mattis.berlin/


Backup Slides
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Conceptual Similarity | Topic Models
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Conceptual Similarity | Topic Models
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Distributional hypothesis: Terms that are present or absent together 
refer to a similar concept (topic)



Conceptual Similarity | Topic Models
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Conceptual Similarity | Prioritizing with Topics
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def login(user, pass):
    if self.check(user, pass): …

def test_correct_password():
    user = self.example_user()
…

Topic 1

Topic 2

Topic 3

Changed lines Test case

dot
product
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 Synonyms, abbreviations, 
abstractions, …



Term Importance | Predictive Value

Use terms that predicted past test failures
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F

F

user
http

user
pass

error
http

if user.check(pass):

raise HTTPError(403)

user
http

user
pass

error
http

user 2 1 50%

pass 1 1 100%

error 1 1 100%

http 2 1 50%

Changed lines

if user is None:
    raise HTTPError(403)

user(0.5) 
http(0.5)
= 1.0

user(0.5)
pass
= 0.5

error(1.0)
http (0.5)
= 1.5

? ? ?

1st 2nd  3rd Future change:

-

+
+

+



Evaluation Details

Dataset: Python projects
▪ Well-tested
▪ Tests must run reproducibly many versions into the past (~10 years)
▪ Only include tests that pass an (un-mutated) control run

LLM-Based experiments:
▪ Performed on NVidia RTX 4090 (24GB GPU Memory)
▪ Models: CodeLlama-7B (initial), StableCode-3B (in the paper), 

CodeGemma-1.1-2b (now)
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Commits Tests
(Param.)

Faults LOC 
Changed

Flask 159 390 (442) 726 12.5

Requests 43 314 (557) 188 13.8

Jinja 68 655 (829) 420 15.2



Bi-term Topic Model for Code

▪ Traditional topic models (e.g., LDA) designed for documents
▪ Code has a smaller vocabulary than natural language documents, 

less redundancy, and a hierarchy/graph-like structure (no 
apparent document boundaries)
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{

} a b

Co-occurrence relation

Syntax Tree

𝑃 𝑎, 𝑏|𝑐 = 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐

Probability of names
co-occurring

Probability of names
belonging to concept/topic c

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation


Fitting a Code Topic Model via Edge Clustering
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a b a b

1. Randomly color edges 2. Re-sample edge color
from adjacent edges

𝑝 𝑐|𝑎, 𝑏 =

1 + 𝛼

2 + 2𝛼
2 + 𝛼

2 + 2𝛼

𝑐 =

𝑐 =

Smoothing term (Dirichlet prior)

a b

3. Assign color, 
repeat 2. & 3. for each edge

Iterate until
Convergence. Then:
Topics = colors

𝑝 𝑎 𝑐 =
𝑒𝑎,𝑐

𝑒𝑐

Co-occurrence
relations:

Gibbs sampling
(Monte Carlo 

method)

 Multigraph
(many edges per
pair of nodes)

Edges from a 
colored c

Edges from a
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https://dl.acm.org/doi/10.1145/3328433.3328455 

https://dl.acm.org/doi/10.1145/3328433.3328455
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https://programming-journal.org/2020/4/12/ 

https://programming-journal.org/2020/4/12/
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